CHAPTER 8. LOCAL REGRESSION MODELS
376

i t. If this indicatop
ing §; approximately to abor 3
: < the method of computing ¢; : Dt -
thlch ?a:rfszlue meltdown occurs, the coded message “Chernobyl” is sent up he
of an eig
5 e i hod is used, the FORTRAN code must allocate
. n the interpolation metho ! ‘ .
Fu}xaallya‘t;gea prediction from the number of observations, the: nuﬁrﬂze;rt ;)d : Zl{;n.c
sp"if;-e tafs and the specification of the surface and errprs. If FhlS a ;1 t U.lp IE o H:a
predic 011 ’the k-d tree division is truncated and a warning Hllessagf‘ sth‘S ne;:eqSitat e |
- SHtIE : roblem is extreme enough that the fit is not carried out; thi : s
cases the p > ~
increasing the value of a. ;

' Chapter 9

Tree-Based Models

Linda A. Clark
Daryl Pregibon

Bibliographic Notes

: i ilin a new book by Cleveland and Grosg
o regr?SSionBrﬁ(t)%flltasti:il;rg?iziallngﬁig 1date back at least to the 1920s. }Iiiti
{fort_hcor'nlﬂg)' re to smooth a time series (Macauley, 1931). An early 1;.;% ;) -:;:_'
?ii)i}-l‘;ag;l}:h:r Zeneral regression problem was investighated b{l W?;}S;?;lg(the 13)(;1'
3 i ——in other words, 10
m?thOd amo;ntm(ll)tzOZit;.m%l?isczzzzrﬁ)lgza]}{lt{own as kernel sr'noot.hi.ng. It lead-
mlr? &igeizgtingotheoretical work but is not of use in practtice Bs&n;:z 18136201;1;1“2;2
oy i i in most datasets. Mo
¥ meﬂ}?% mt?vifélz‘lz;rgliszgg g;t;irliin (1974), who fitted quadra,ticﬁptc‘slyn)
iy St o (1977), who fitted linear polynomials. The me?hod of t mtig
e (; C'ne'bed by’ Cleveland (1979) for one predictor, anfl is the basis o
here was descri which has now been upgraded to the function scatter. s:oo :
function ;owezsbevlin (1988) extended the method to two Or MOTe Predlc o.
plevel,aﬂ znthe sampling properties in the Gaussian case. (Sampl}ng
}nVeStlgate tric case are still under development.) The computaftlor:) . ,:.
a th‘_?bsbénil;n gel;tions 8.3 and 8.4, which are crucial to local regression being ik
'ijne S;:;c:ice, are due to Cleveland and Grosse (1991).

is chapter describes S functions for tree-based modeling. Tree-based models pro-

an alternative to linear and additive models for regression problems and to

logistic and additive logistic models for classification problems. The models
tted by binary recursive partitioning whereby a dataset is successively split
0 increasingly homogeneous subsets until it is infeasible to continue. The imple-
ntation described in this chapter consists of a number of functions for growing,
playing, and interacting with tree-based models. This approach to tree-based
dels is consistent with the data-analytic approach to other models, and consists
arily of fits, residual analyses, and interactive graphical inspection.

Tree-Based Models in Statistics

ased modeling is an exploratory technique for uncovering structure in data.
ifically, the technique is useful for classification and regression problems where
8 set of classification or predictor variables (z) and a single-response variable

N y is a factor, decision or classification rules are determined from the
1or example,

if (ﬂ?] < 2.3) and (333 € {A,B})
Y is most likely to be in level 5.

€1 i is numeric, regression rules for description or prediction are of the form
i (25 < 413) and (z € {C, D, F}) and (5 < 8]
€N the predicted value of y is 4.75.

377

s

CHAPTER 9. TREE-BASED MODELg
378

A classification or regression tree is the collection of many c?.uch rulgs -ieifggi]ln?d |
: ; tittoning, which is discussed i in
e known as recursive par , : '
. ;i przczdurThis form of classification or prediction rU.Ie is very d¥fferent 1from
Saa-(:_‘uO?l : b more classical models, such as logistic and linear reg_ressi:)_n a.}1)1at yses,
th}? t gl;egarycombz'nations are the primary mode of expressing relatn}(l)ng 'lp.:s:1 el WQFH
& ?rilgg Indeed, this difference is both the strength of the method and also jtg
variables. .
R is in its infancy and far behind tha
istical i - d models is in its infancy
tical inference for tree-base is o
for ?;;tsl;c and linear regression analyses. This is 1()art1y be;aus?eacﬂizzjcnz a;ngpe
y : ru 4
! i i -based models (e.g., eac
ble selection underlies tree : -

Ofbii?lzf the available classification or predictor varlable_s, and sorr;.:e}z] ;n;;;trf;:i b.e 7
e d at all). Despite the lack of formal procedures for {nftlerencel, sl 1§
naea, idés read popularity as a means of devising pred1ct19n rules (t) hp‘l an_\j
gamn;gc;ﬁ VahI:ation as a screening method for variables, as a-dl-agnostlc ec1 t';r.nqule t(.,‘,‘
- (taheeadequacy,of linear models, and simply for summa,rlzn;llg large mu ivariate

88) ; - :
gsasteasets Some possible reasons for its recent popularity are that

@ 11 el‘dl a)pll(:a.tl{)ils eS[)e 14,]y Whele l)h.e Set Of pIedl(:t()IS COIltaJ.IlS a m X
Pl C : ;
C
Of numeric Ma]ﬁl&bles azﬂd faCtOIS, tlee'based IIlOdelS are SOIIletIIIIES easler

interpret and discuss than linear models;

= p p CtOI‘
L] tI ce ha.SE:(i IIiOdelb are 1varlant to II].OIIOtOIle reexpressions Of Ie(h
I)e SO]la']Ie E) e e 10T 1 Wil] ese a)liea a ode (0] I

irrelevant;

i i - d «
e the treatment of missing values (NAs) is more satisfactory for tree-based m
els than for linear models; and

; s s or: thetll

e tree-based models are more adept at captur.mg nonadditive b-e}écilvw;;lfess
dard linear model does not allow interactions between variables s th
are prespecified and of a particular multiplicative form.

i ide the or
Among the other models covered in this book, tree-based modelsl preci:lde
means of analysis for factor response variables at more than tt}\:(r)czi z\fr diéplay' 4
-called because the primary me
Tree-based models are so-cal : 1 S
in rovide several examp

is in the form of a binary tree. We now p . -
ftf lialllll e of application of the methods. The exa‘mmples are ::nrga;uzel(il ;(i:f}ca
thz typi (numeric or factor) of the response variable (y) and the c
predictor variables (z) involved.

9.1.1 Numeric Response and a Single Numeric Predicto

: : ta
Figure 9.1 displays two views of a tree-based model relating rlnﬂ;zz:ﬁz foll
augtomob-iles in the car.test.frame data frame. The left panel o :

andard method of displaying a tree-based model.

bthe interior nodes, Automobiles are first spli

TS e

9.1. TREE-BASED MODELS IN STATISTICS 379

Weight<2567 5

Weighl<2280 Weight£3087.5

Weight£2747.5

Weight«3637.5
34.0 28.9

Mileage

23.3 24.1 205 220

2000 2500 3000 3500

Weight

relating mileage to automobile weight, The plot
ly displayed, whereby successive partitions of the

g each split. The overplotting
s type of display. The plot in the right panel shows

- This representation,

The idea is that in order to
om the top node of the tree,
according to the rules, called splits,
t depending on whether they weigh
split according to weight being less
predicted mileage of 34 miles/gallon
eage of 28.9 miles/gallon. For those
ds, six weight classes are ultimately
5.6 miles/gallon to a gas-guzzling low

ict mileage from weight, one follows the path fr
the root, to a terminal node, called a leaf,

8 than 2567.5 pounds. If $0, they are again
0 2280 pounds, with the lighter cars having
d the heavier cars having slightly lower mil
Omobiles weighing more than 2567.5 poun
» With predicted mileage varying from 2

CHAPTER 9. TREE-BASED MODELS 9.1. TREE-BASED MODELS IN STATISTICS 381
380 9.

fitted model is a step function. The height of each step corresponds to the average oY, aplit, 1, deVisnes, yval, —

mileage for automobiles in the weight range under that step. There are a total of o ilhsiobes "R Eik

. inal nodes in the tree in the left panel.
Rleht shaps,; o foreagh of iy fesmiaal 1) root 81 83.234001 absent (0.790 0.2100)
2) Start<12.5 35 47.804001 absent (0.571 0.4290)
4) Age<34.5 10 6.5019999 absent (0.900 0.1000) =*
5) Age>34.5 25 34.296001 present (0.440 0.5600)
10) Number<4.5 12 16.301001 absent (0.583 0.4170)
20) Age<127.5 7 8.3760004 absent (0.714 0.2860) =
21) Age>127.5 5 6.73 present (0.400 0.6000)
11) Number>4.5 13 16.048 present (0.308 0.6920)
22) Start<8.5 8 6.0279999 present (0.125 0.8750) *
23) Start>8.5 5 6.73 absent (0.600 0.4000) =
3) Start>12.5 46 16.454 absent (0.957 0.0435)
6) Start<14.5 17 12.315 absent (0.882 0.1180)
12) Age<59 5 0 absent (1.000 0.0000) =

9.1.2 Factor Response and Numeric Predictors

The data in this section are from the kyphosis data frame introd}lced in Chapt_e? 6
and analyzed further in Chapter 7. Recall that 11_1 those cha.pters linear anfi 1E)llddltwe
logistic models predict the probability of developmg Kyphosis from the varia eszge,
Start, and Number. The resulting prediction equations are smooth func.tto‘ns of the
first two predictors. By contrast, we now demonstrate tree-based predlctlon- equa-
tions that are not smooth but share the essential features of these more traditiong

analyses.

g | T & B] 13) Age>59 12 10.813 absent (0.833 0.1670)
“ } . g 2 < 26) Age<157.5 7 8.3760004 absent (0.714 0.2860) *
28] ! T 2” - . 27) Age>157.5 5 0 absent (1.000 0.0000) =
g = T 1 o ; 7) Start>145 29 0 absent (1.000 0.0000) *
c8 g” | 5 !
) ! S Y _. ,
LI | N 1 o : Table 9.1: A tree-based model for predicting Kyphosis. The first number after the split is
- 1 o : . 1 the number of observations. The second number is the deviance, which is the measure of
° absent present absent present absent present node heterogeneity used in the tree-growing algorithm. A deviance of zero corresponds to
: a perfectly homogeneous node. This term is defined more precisely in Section 9.4.
kyphosis kyphosis kyphosis

Figure 9.2: Bozxplots of the three numeric predictor va’riables. in the kypho.sis datda. fr}a
For each variable, the distribution of individuals with .and wzthc.)ut Ky'phostls ‘gre- ispla
side by side. The predictor Start ezxhibits the gmgtest difference in these dzgtm utz;lms st
the lower quartile of those without Kyphosis is just below the upper quartile of those

Kyphosis. The split on Start partitions the 81 observations into groups of 35 and 46 individ-

lials (nodes 2 and 3), with probability of Kyphosis of 0.429 and 0.0435, respectively.
this first group is then partitioned into groups of 10 and 25 individuals (nodes 4
d 5), depending on whether Age is less than 34.5 years or not. The former group,
1th probability of Kyphosis of 0.10, is not subdivided further. The latter group is
ibdivided into groups of 12 and 13 individuals (nodes 10 and 11), depending on
her or not Number is less than 4.5. The respective probabilities for these groups
0.417 and 0.692. This procedure continues, yielding nine distinct probabilities
hosis ranging from 0.0 to 0.875. Clearly, as the partitioning continues, our
in the individual estimated probabilities decreases as they are based on less
Lless data, Many of the tools discussed in Section 9.2 are aimed at assessing the
tee of over- or underfitting of a tree-based model.

The distributions of the predictor variables are plotted as a fU.IlCti.On of Kyp;o
in Figure 9.2. Of the three predictors, Start appears to ble tl-le. best smgl'e predi
since there is a much greater propensity of Kyphosis for 11'1d1v1duals having ih
12 than those with Start> 12. The algorithm underlying tree-based pre C:
determines this cutoff more objectively (by optimization.) as 12.5.- Moreovfz‘,
method then applies the same principle separately to indl}’ldl{als with Start(_i_c
and those with Start> 12.5—namely, comparing the difstrl?Jutlons o'f t.he pr]e 1
as functions of Kyphosis. The result of repeated application (?f tl{ls 1Flea. e :
the tree displayed in Table 9.1. This semigraphical repre'sentatlon is Fhﬁ"er(—mc
those used in Figure 9.1. It is most useful when the details of the fitting pro

are of interest.

382 CHAPTER 9. TREE-BASED MODELS 9.2. S FUNCTIONS AND OBJECTS 383

9.1.3 Factor Response and Mixed Predictor Variables

The data are from the market.survey data frame introduced in Chapter 3 and suh.
sequently analyzed in Chapters 6 and 7. Here we briefly review the available data, ; 3547759
which were obtained from a survey of 1000 people; for now, we concentrate op
the 759 individuals for whom complete data were obtained. The aim of the syr.
vey was to identify segments of the residential long-distance market, where AT&T
should concentrate its marketing efforts. The variables collected include househo]q
income (income), number of household moves in the past five years (moves), age of
respondent (age), education level (education), employment category (employment):
average monthly usage (usage), whether the respondent has a nonpublished phone
number (nonpub), whether the respondent participates in the Reach Out Amer-
ica Plan (reach.out), whether the respondent holds a calling card (card), and the
respondent’s chosen long-distance carrier (pick).

The tree in Figure 9.3 provides a particularly simple prediction rule for long-
distance carrier. For average usage of more than $12.50 per month, the preferred
choice is AT&T. For average usage of less than $12.50 per month, the choice depends
on whether the respondent has a nonpublished directory listing. If so, then AT&T
is again the preferred choice, but if the directory listing is published, then an “other
common carrier” (QOCC) is preferred. (Evidently the OCC folks did some tele-
marketing themselves!)

usage<12.5
usage>12.5

ATT

205/464 95/295

nonpub:N
nonpub:Y

ocC ATT

136/355 40/109

9.2 S Functions and Objects

Figure 9.3: A display of a tree fitted to the long-distance marketing data. This form of tree
display is primarily for presentation purposes as it conceals the details of the tree-growing
process. The edges connecting the nodes are labeled by the left and right splits. Interior
nodes are denoted by ellipses and terminal nodes by rectangles, with the predicted value of
the response variable centered in the node. The number under each terminal node is the
misclassification error rate; for erample, in the rightmost node, which is labeled ATT, 95
out of the 295 respondents in the node actually picked OCC.

Our approach is not to have a single function for tree-based modeling, but rather -
a collection of functions, which, together with existing S functions, form a basis for
building and assessing this new class of models. Our implementation centers around
the idea of a tree object. This object provides commonality among functions te
grow, manipulate, and display trees.

grows a classification tree using the variables from the data frame kyphosis and
gives the name z.kyph to the resulting tree object. The function tree() automati-
cally distinguishes between regression and classification trees according to whether
the response variable is numeric or a factor. Tt implements a binary recursive parti-
tioning algorithm described in Section 9.4. The only detail relevant to the present
discussion is that the algorithm adds nodes until they are homogeneous or contain
. too few observations (< 5, by default).

The function tree() takes two arguments, a formula object and a data.frame,
: either of which can be missing. As with all modeling functions, a missing data.frame
argument simply means that the functions expect the variables named in formula to
* bein the search list. If formula is missing, then it is constructed automatically from

9.2.1 Growing a Tree

There is a single function to grow a tree, named tree(). The expression
> z.,auto <- tree(Mileage ~ Weight, car.test.frame)

grows a regression tree using the variables Mileage and Weight from the data frame
car.test.frame and gives the name z.auto to the resulting tree object. Similarly;
the expression

> z.kyph <- tree(Kyphosis ~ Age + Number + Start, kyphosis)

;|

384 CHAPTER 9. TREE-BASED MODELg

the data.frame using the first variable as the response. For example, an equivalent
expression defining z.kyph is tree(kyphosis). Valid formulas for trees allow all
standard manipulations of variables such as cut(), log(), I(), etc. These are
seldom used on the right side of a formula since trees are invariant to monotong
reexpressions of individual predictor variables. The only meaningful operator in a
formula for trees is “ + ,” indicating which variables are to be included as predictorg.
This is so because trees capture interactions without explicit specification. Given
these points, it may seem that formulas for trees are a gross overkill as a meang
of specifying the terms used in the model. Nonetheless, they provide a convenient
means to specify reexpressions of the response variable and, more importantly, tq
facilitate applying quite different models to the same data.

A tree object contains information regarding the partitioning of the predictor
variables into homogeneous regions that is required by subsequent functions for
manipulating and displaying trees. Predictably, a tree object has class "tree".
Generic functions such as summary(), print(), plot(), residuals(), and predict()
work as expected for objects of class "tree". A summary of a fitted tree-based mode]
is available by the summary() function:

> summary(z.auto)

Regression tree:
tree(formula = Mileage ~ Weight, car.test.frame)
Number of terminal nodes: 8
Residual mean deviance: 4.208 = 218.819 / 52
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.889 -1.111 0.000 0.000 1.1867 4,375

> summary(z.kyph)

Classification tree:

tree(formula = Kyphosis ~ Age + Number + Start, kyphosis)
Number of terminal nodes: 9

Residual mean deviance: 0.594 = 42.742 / 72
Misclassification error rate: 0.123 = 10 / 81

Notice that there is some difference in the summary depending on whether the tree
is a classification or a regression tree.

A tree prints using indentation as a key to the underlying structure. Since
print() is invoked upon typing the name of an object, a tree can be printed sim-
ply by typing its name. The example given in Table 9.1 was constructed with the
expression z.kyph. The amount of information displayed by print() relative to
summary () might seem disproportionate for objects of class "tree", but the philoso-
phy that print () should provide a quick look at the object is maintained, as it does

9.2. S FUNCTIONS AND OBJECTS 385

Jittle more than format the contents of a tree object. The su.m.mary(-) function on
the other hand does involve computation that can result in less than instantaneous

response.

Subtrees

A subtree of a tree object can be selected or deleted in a natural way through
gqubscripting; for example, a positive subscript corresponds to' sglect-l-ng a subtree
and a negative subscript corresponds to deleting a subt-r.ee. Thzs implies that there
is an ordering or index to tree objects that permits identification by number. Iltldeed,
nodes of a tree object are numbered to succinctly capjuure the tre'e topolog,{/ agd
to provide quick reference. An example of the numbering scheme is that given 11?:
Table 9.1 for the tree grown to the kyphosis data. Descendants of node number
can be removed, or a new subtree can be rooted at node 3, as follows:

> z.kyph[-3]
node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 81 83.234 absent (0.790 0.2100)
2) Start<12.5 35 47.804 absent (0.571 0.4290)
4) Age<34.5 10 6.502 absent (0.900 0.1000) *
5) Age>34.5 25 34.296 present (0.440 0.5600)
10) Number<4.5 12 16.301 absent (0.583 0.4170)
20) Age<127.5 7 8.376 absent (0.714 0.2860) *
21) Age>127.5 5 6.73 present (0.400 0.6000) *
11) Number>4.5 13 16.048 present (0.308 0.6920)
22) Start<8.5 8 6.028 present (0.125 0.8750) *
23) Start>8.5 5 6.73 absent (0.600 0.4000) *
3) Start>12.5 46 16.454 absent (0.957 0.0435) *

> z.kyph[3]
node), split, n, deviance, yval, (yprob)
* denotes terminal node

3) Start»12.5 46 16.454 absent (0.957 0.0435)
6) Start<14.5 17 12.315 absent (0.882 0.1180)
12) Age<69 5 0 absent (1.000 0.0000) *
13) Age>59 12 10.813 absent (0.833 0.1670)
26) Age<157.5 7 8.376 absent (0.714 0.2860) *
27) MAge>157.5 5 0 absent (1.000 0.0000) *
7) Start>14.5 29 0 absent (1.000 0.0000) =

Implicit in our discussion above is that a subtree of a tree object is its.eif a tree
object. This allows a subtree to be printed with the same ease as the original tree.

386
CHAPTER 9. TREE-BASED MODELS

The 1ml.p0rtanf:e of tree‘subscripting becomes apparent as tree size gets larger
example, consider growing a tree to the long-distance marketing data: E

> »
z.survey <- tree(market.survey, na.action = na.omit)

Tglte -tree d1§played earlier %n Figure 9.3 is a particularly terse summary of this ¢
0 :’;‘uned with the expression z.survey[-c(4,5,3)]. The complete tree 3
is displayed using the plot() function in Figure 9.4. The function dis ,1 vo o ol
as an unlabeled dendrogram, rooted at the top of the figure. The pliis o
(r{r;e;zllll(l):i _takes an optional é%rgument, type=, which controls node plac:men'ttr?}(l)
fu;mtic;nli fnt(;::zu-mforn; spacing whereby the? vertical position of a node pai'r is z
pov i nlnpor ance of the' paregt split. It is particularly appropriate durin
alter{] - ere t'.rui prlmary consideration is often one of tree simplification. Thg
i res(]al l(;y};§= u") 'l;ehavu)r uses node. depth to guide vertical placement of IlOdeSe
e ,d . a uniform Iayc-:ut that is useful for subsequent labeling. The tr .
played in the left panﬁfl of Figure 9.4 was obtained with the default node spaci o
:.Yg.; p=10"t (Ilz).sulrve{l), while that in the right panel was obtained by plot(z. surv:yg ’
X parentu T.H ‘n. t‘-e fozjl‘ner plot, the importance of the first few splits is readill
tpp : is %mflght is at the expense of reduced resolution at the leaves of 1
ree, where detail is arguably of lesser importance. =

in F{Jabeling a tree is distinct from plotting a tree. The size of the tree displayed
! llgiltlrz 914 de}'nonstrates why two separate functions are required; once the tJl[‘ee
me}:; }(I)Odef(; a::belmg ma;(; or may not follow depending on its topology. The text()
r trees provides a means to label the dend di ;

The user has control over what ¢ o e
. : components of the tree object are used as |

interior or leaf nodes. The tree displ: i EHEB Twa g,
s splayed in the left panel of Figure 9.1 was labeled

Tree. s s e
. j:; h;ﬁ;((i) rr;locieh‘ngl 113 §1m11ar J'[11n many ways to that discussed in previous chap-
: ant similarity is the degree to which tools to di
: ' : . lagnose model ade-
gltéa:Sy arel.alzlphed. Figure 9.5' displays two commonly used plots for regression mod-
o agp 1\3 to the automobile mileage example—namely, a scatterplot of residuals
Obts;t;ie dtte.t}xlraiﬁes and a normal probability plot of residuals. The fitted values are
wi e expression predict(z.auto). The residual
obtained by subtracting the fitted v] o vt T o
alues from the response variabl i i
the expression residuals(z.au b ot ot
.auto). The normal probability plot d
unusual patterns, but the pl i eltes Getonetres ol
: plot of residuals versus fitted values d
| ot ! ls s demonstrates het-
;‘;o;?egsstécity. This pattern, together with the moderate curvature demonstrated
gu e Y.1, suggests that a reexpression of the response variable say from miles
per gallon to gallons per mile, might be more appropriate. ’

g.2. S FUNCTIONS AND OBJECTS

387

Figure 9.4: Dendrograms of the tree z.survey grown to the long-distance marketing data.
The dendrogram on the left uses the change in deviance to gquide the vertical positioning of
each pair of nodes. Resolution at the leaves of the tree is sacrificed to provide a visual cue
of split importance. The dendrogram on the right uses node depth to guide the placement

of each node. (The root has depth 0.) i

Pruning and Shrinking

Another aspect of assessing a fitted tree-based model is the extent to which it can
be simplified without sacrificing goodness-of-fit. This is also an important consid-
eration for prediction. Since tree size is intentionally not limited in the growing
process, a certain degree of overfitting has occurred. There are two ways to ad-
dress this problem; the one to choose depends upon whether the primary concern
is parsimonious description or accurate prediction.

Figure 9.6 displays three variations of z.kyph, the classification tree grown to the
kyphosis data. The first panel is the dendrogram for the full tree with nine terminal
nodes. The second panel is a pruned version with three terminal nodes. The third
panel is a shrunken version with nine actual terminal nodes and about three effective
terminal nodes. Note that the pruned tree shares the same estimated probabilities
as the full tree but that apart from the root node, those of the shrunken tree are

completely different. Summaries of the pruned and shrunken trees are:

388
CHAPTER 9. TREE-BASED MODELS
e o
<+ 4 = o
> 0o °
o 9 c
[+
B ° -
3 o © o g "7 3
% .y & o oo o g W
2 o o s Q 'y
o w
3 o © o] s °
g O g o Q 3
o 0) 2 J
Y1 5 %0 o Boq y
0
0 o ooﬁ
< ’
roL o | v o]
20 25 30 ; ‘ I
-2 -1 0 1 2
predict(z.auto) i
Quantiles of Standard Normal

Figure 9.5: Two standard di)
.5 tagnostic plots for r 51)
b o - : egression data as applied to the fit]
F g Paneieiff;tnzon mt::; ieﬂbpg'r:el is that of residuals versus fitted values f;’hie;;;mtbcjd
_ probability plot of residuals. The] i ¥
no apparent outliers but that the variance seems to increase S@iifhloti;):?ggeﬁ fhat ther o8

> summary (zp.kyph)

Classification tree:

gruye.tree(tree = z.kyph, k = 5)

[?;1:§;Zf acf;:iiz"used in tree construction:
Number of terminal nodes: 3

R?sidual mean deviance: 0.734 = 57.252 / 78
Misclassification error rate: 0.173 = 14 / 81

> summary(zs.kyph)

Classification tree:

shrink.tree(tree = z.kyph, k = 0.25)

Number of terminal nodes: 9 -

Effgctive number of terminal nodes: 2.8
R?51dua1 mean deviance: 0.739 = 57 754 / 78.2
Misclassification error rate: 0.136-= 11 / 8i

Which tree i
is better?
ter? In one sense, the pruned tree, since it provides a much more

9.2. S FUNCTIONS AND OBJECTS

389

0.790 \

0.790 \
0791[

s Bl [
8
= r~ 2
] © ~
& e = o mod
S S o mae 9
o meo (=]
o wwbww B
g onwbn, P,
K bbhnginr
S5 coococ¥o¥
s®o

0.900
0.440

=}
k=1
S

0.125
0.600

the tree grown to the kyphosis data. All plots are on a
common scale, and nonuntform {vertical) spacing of nodes is used. The nodes are labeled
with the estimated probability that Kyphosis==absent. The node labels have been rotated to
improve readability. The first panel 1s the full iree z.kyph; it is o graphical representation
of the tabular version presented in Table 9.1. The second panel is a pruned version of
z.kyph, whereby the least important splits have been pruned off. Note that the estimated
probabilities and node heights match those of the full tree. The third panel is @ shrunken
version of z.kyph, whereby the estimated probabilities have been pulled back or shrunken
toward the root. Apart from the root, neither the estimated probabilities nor the node heights
match those of the full tree. The squashing of the dendrogram at the bottom indicates that

these nodes have been shrunk completely to their parents.

Figure 9.6: Three variations of

succinet description of the data (note that only two out of the three predictors

In another sense, the shrunken tree, since its misclassification error rate is
o hard and fast rule on which is

(simplicity versus accuracy).

remain).
lower than that of the pruned tree. Thus, there is n
better; the choice depends on where your priorities lie

We now proceed to describe these methods in more detail.

The function prune.tree() takes a tree object as a required argument. If no
additional arguments are supplied, it determines a nested sequence of subtrees of
the iligglied tree by recursively snipping off the least important splits. Importance
is captured by the cost-complexity measure:

Do(T') = D(T") + asize(T")

390 CHAPTER 9. TREE-BASED MODELS

where D(T:) is the deviance of the subtree 77, size(T") is the number of termin
nodes of. T an(.i @ is the cost-complexity parameter. For any specified o co s
complexity pruning determines the subtree T" that minimizes D, (T") over ail sus]:t,h
trfees of T'. The optimal subtree for a given « is obtained by supplying prune tree(-
;;V'lth the argument .k=a. For example, the tree displayed in the second pane| Q)f
;gmi)etg.ﬁ wa};s obtained by prune.tree(z.kyph, 5). If k=q is a vector, the sequeng
Of subtrees that minimize the cost-complexity m i e ok]
s p Y measure is returned rather thap
dd"I‘%le function shrink.tree() takes a tree object as a required argument. If p,
? 1?}(_:;1% e_l,éguments are supplied, it determines a sequence of trees of the supplieg
ree that differ in their fitted values. A particular tree i is i
68 that . n the sequence is ind
by a, which defines shrunken fitted values according to the recursion: s

y(node) = ag(node) + (1 — a)j(parent)

wEere___g(@iode_) is the usual fitted value for a node, and §j(parent) is the shrunk
fitted .value for the node’s parent—that is, it was obtained by applying the sn 4
recursion. The function shrink.tree() uses a particular parametrization of ?}? .
gg)ézmq{@.s}}rin? children nodes to their parent based on the magnitude C;f t}?(:
f1Hetrence Bitweeng_yg(pgqigj _and g(parent). The sequence is anchored between the
u ree (o =1) and the root node tree (o = 0). A heuristic argument allows one t
map o 1nt9 the number of effective terminal nodes, thereby facilitating compariqor?
vnl;lth pruning. The tree for a given « is obtained by supplying shrink.tree() “;ith
t e‘ argur‘nent k=q. E‘or example, the tree displayed in the third panel of Figure 9.6
Z\;le:to;rtealcrilid by. shrlnk.tree(z.k]{ph, -26). If k=a is a vector, the sequence of treés
iy etermined by these shrinkage parameters is returned rather than a tree
Flgm‘"e 9.7 displays the sequences for pruning and shrinking z.survey. Th
are obtained by omitting the k= argument and plotting the resultiné ob'egt. These
opJects have class "tree.sequence" for which a plot() method exists fEacl‘l aes‘;
dlsplays‘the deviance versus size (the number of terminal nodes or. the nulfnl?e
of-eﬁectwe terminal nodes) for each tree in the sequence. An additional (u e§
axis sholws the mapping between size and k for each method By construé;:t]?er
the' dew-ance decreases as tree size increases, a common pher;.omenon in moélonl-’
fitting (i.e., the fit improves as parameters are added to the model). This li ?t-
the-usefulness of the plot except in those situations where a dr&maéic h o il
deviance occurs at a particular value of k. SRS
- It -should not be surprising that the sequences produced by these methods pro-
vide little guidance on what size tree is adequate. The same data that were Lll)sed
EE grow the‘tree are being asked to provide this additional information. But since
e tree- was optimized for the supplied data, the tree sequences have no possible
alternative but to behave as observed. There are two ways out of this di}iemma'

9.2. S FUNCTIONS AND OBJECTS 391

0.23 0.46 41.0 4.9 2.2

1000
ol' of ©
1000

o

900
/
800

deviance
800
deviance
800

700
A
700

600
/
o
/
o
o
600
et

size size

Figure 9.7: Plots of deviance versus size (number of terminal nodes). for sequences of
subtrees of z.survey. The left panel is based on optimal shrinking while the mght‘panel
is based on cost-complexity pruning. The former is plotted as a continuous functzm.@ to
reinforce its continuous behavior. The latter is plotted as o step function becau.s‘e optzmql
subtrees remain constant between adjacent values of k. Each panel has an -addztwnal azis
along the top indicating the values of k that correspond to the different sized subtrees in

the sequence.

one is to use new (independent) data to guide the selection of the right size tree,
and the other is to reuse the existing data by the method of cross-validation. In
either case, the issue of tree-based prediction of new data arises. Let’s pursue this
diversion before returning and concluding our discussion of choosing the right size

tree.

Prediction

An important use of tree-based models is predicting the value of a response varial?le
for a known set of predictor variables. By prediction we mean to evaluate the splits
describing a tree-based model for a set of predictor variables and defining the yval
at the deepest node reached as the prediction. Normally this corresponds to a leaf
node of the tree, but we adopt the convention that a prediction may reside in a
nonterminal node if, in following along the path defined by the set of predictor
variables for a new observation, a value of a predictor is encountered that has

292;1; (E)Lfel;: seen at that node in the tree-growing process. The classic case of this
$ ountering a missing value (NA) when only compl i
te observati)
to grow the tree. More : ol is M
; generally and more subtly, this conditi
predictors whenever a split is encount ey e e
¢ ered where the value goes neith i

redictors v ‘ - : - er left nor right,
(e.g., if = B and the left and right splits at a node are, respectively, z € {A %}

and z € {D, E}).

142/241
usage<12.5
usage>12.5
ATT
54/161 35776
nonpub:N
nonpub:Y
OCccC ATT
44/132 19/29

nf;rt;agéi Tretehrepm;e.zntcgwn of prediction from the classification tree zs.survey. The
» are the predicted values of pick. The numbers di : .

: ‘ . f isplayed under each mode rep-
resent the misclassification error rate for the new data na.market.survey. The oifertil

misclassification error rate s qui]
quite high (0.41). Four of the respond /
. . . t‘
node due to missing values in the predictor usage. B

USin\gTea;et;l;éli;c; tll‘ula 12c:11g—dlstance marketing example where we illustrate prediction
el It a survey respondents. These respondents were part of the
B théy u }?;elje omitted from the preliminary analysis because of missing
Pmdilc o frvarltah €s. T.he d.ata are collected in the data frame na.market.survey-
eciotions om the tree in Figure S.).S are displayed in Figure 9.8. The figure shows

e disposition of the 241 observations along the prediction paths of the tr of
the 241 observations, 161 are directed to the left (OCC), 76 to the right (ATTe)e-aﬂd

wre-—

4 remain at the root node (due to missing values for usage). Of the 161, 132 are
directed to the left (OCC) and 29 to the right (ATT). The misclassification error
rate associated with these predictions is quite high (41%). This error rate varies
from leaf node to leaf node, from 33% (leftmost leaf), to 66% (middle leaf), to 42%
(rightmost leaf).

The tree displayed in Figure 9.8 was obtained with the expression:

zd.survey <- predict(zs.survey, na.market.survey, type = "tree")

The predict () method takes a tree object and a data frame. The tree object is likely
to be a simplified version of that provided by tree(). The names of the variables
in the data frame must include the predictors in the formula used to construct the
tree. The function returns the values predicted by the tree for the data in the
data frame, either as a vector (the default) or as a tree object, type="tree". If a
data frame is not supplied, predict() returns the fitted values for the data used to
construct the tree; we used this feature in our earlier discussion of residual plots.

Cross-validation

We now return to the topic of choosing the right size tree based on data not used
to grow the tree. Test data can be supplied to the functions prune.tree() and
shrink.tree() with the newdata= argument. The functions return an object of class
"tree.sequence” containing the sequence evaluated on the test data. Figure 9.9
illustrates this functionality for the market survey data, where the new data consist
of those held back due to missing values. These plots span a wide range of tree
sizes, but the most promising are those with fewer than a dozen nodes. T he range
can be restricted by suitable specification of the argument k. Panel 1 of Figure 9.10
demonstrates such a restriction for k in the range 0.05 to 0.20 for the optimal
shrinking sequence. Evidently, either a very small tree is called for or the data with
NAs are not drawn from the same population as those without.

The function cv.tree() can be used to address this ambiguity by applying a
procedure described in Section 9.3 called cross-validation. The basic idea is to
divide the original data into mutually exclusive sets. For each set, a tree is grown
to the remaining sets and a subtree sequence obtained; the set held out is then used
to evaluate the sequence. Deviances from each set are accumulated (as a function of
k) and returned as an object of class "tree.sequence”. A plot of the cross-validated
deviance versus tree size is seldom monotone decreasing since data used to evaluate
the sequences were not used to construct them. A common feature of the plot is a
fairly flat minimum, and trees in this region are candidates for further consideration.
The result of tenfold cross-validation of the tree z.survey is displayed in the right
Panel of Figure 9.10. The plot was obtained by the expressions

394 CHAPTER 9. TREE-BASED MODELg

0 023 0.46 41.0 4.9 2.2
_0‘ L A . i 2l
2 /
a4 [=3
< w0
o
8 / [+}]
&8 9 2 £
= 81 & g 28
o /0 3
P °
o o
8 o/ § 1
0.~
a0
BN (o T T T T
T T
1 20 40 60 80 1 20 40 60 80 99
size size

Figure 9.9: Plots of deviance versus size for sequences of subtrees of z.survey evaluated o

new data. The new data are from the data frame market.survey but were omitted from thn
fit due to missing values in some of the predictors. The na.tree.replace() function waz
used to replace NAs with an additional factor level. Since the original tree was constructed
from data without missing values, this in effect means that when the new level "NA" ¢

encpuntered, the deviance at that node is used. The left panel is based on optimal shrmkz’nw
wﬁzte the right panel is based on cost-complexity pruning. Comparison with Figure 9?1
highlights the differences in these sequences when based on training and independent te.st
data. This figure suggests that either a very simple tree (at most three nodes) be used to

summaﬁze these data, or that the two datasets, those with and those without NAs, are
qualitatively different. ’

> k <- seq(.05, .20, length = 10)
> cv.survey <- cv.tree(z.survey, r.survey, k = k)
> plot(cv.survey, type = "b")

The dataset r.survey contains a random permutation of the integers 1 to 10 of
length length(pick), denoting the assignment of the observations into 10 mutu;ﬂly
('axc_‘.lusive sets. The function cv.tree() will determine a permutation by default, but
it is often useful to specify one, especially if comparison with another sequer;cing
method is desired. The final argument, FUN=, specifies which sequencing function is
to be used; the default is shrink.tree.

9.2. S FUNCTIONS AND OBJECTS 395
0.085 0.160 0.190 0.085 0.160 0.190
& lo
o
- =
g \
o
3 21"
3 &
3 8 \
§ 8 § 2 o
> > o
@ B =
o © \
=]
] 0
(=]
o |
8 = \O
@
\ o
- O-g__g—0 o
2
2 4 6 8 i0 12
size size

Figure 9.10: Plots of deviance versus size for sequences of shrunken trees of z.survey. The
range of trees considered was restricted to values of k between 0.05 and 0.20, corresponding
to trees with effective size from 1 to 12. The left panel is based on evaluating the sequence
on new data while the right panel is based on cross-validation. The left panel provides
sharp discrimination in tree size, strongly suggesting a three-node tree. The right panel is
not so sharp and is typical of sequences computed by cross-validation. Even so, a modest
seven-node tree is suggested.

" 9.2.2 Functions for Diagnosis

Residual analysis is important and not peculiar to a single class of models. In
the case of trees, it is natural to exploit the very representation that is used to
capture and describe the fitted model—namely, the dendrogram-—as the primary
means of diagnosis. We now introduce functions that utilize the tree metaphor to
facilitate and guide diagnosis. The functions divide themselves along the natural
components of a tree-based model—namely, subtrees, nodes, splits, and leaves. Most
of the methods involve interacting with trees, and by this we usually mean graphical
interaction. We note parenthetically, and sometimes explicitly below, that all the
functions can be used noninteractively (by including a list of node numbers as
an argument), but their usefulness seems to be significantly enhanced when used
interactively.

In certain of the figures in this section, a (new) general mechanism to obtain
multiple figures within the S graphics model is used. The split-screen mode is an

alternative to par(mfrow) that allows arbitrary rectangular regions (called screens)
to be specified for graphics input and output. We use this mechanism rather than
the standard multifigure format not only to attain a more flexible layout style, but
also because the order in which screens are accessed is under user control. It is
able, for example, to arbitrarily receive graphics input from one screen and send
graphics output to another. We have attempted to restrict our use of the split-
screen mode to minimize the introduction of too much ancillary material. A single
function tree.screens(), called without arguments, will set up a generic partition
of the figure region used by the tree-specific functions that we provide. See the
detailed documentation of split.screen() for further information.

9.2.3 Examining Subtrees

The function snip.tree() allows the analyst to snip off branches of a tree either
through a specified list of nodes, or interactively by graphic input. For the former,
the subset method for tree objects described earlier, "[.tree"(), is a convenient
shorthand. For example, the expression z.auto[-2] is equivalent to the expression
snip.tree(z.auto, 2). This usage requires knowing the number of the node or
nodes in question; the interactive approach obviates this need. It is most convenient
when working at a high-resolution graphics terminal and provides a type of what-if
analysis on the displayed tree. The graphical interface is such that a single click
of the graphics input device (e.g., a mouse) informs the user of the change in tree
deviance that would result if the subtree rooted at the selected node is snipped
off; a second click on the same node actually does the snipping. By snipping,
we mean that the tree object is modified to reflect the deleted subtree and also
that the portion of the plotted dendrogram corresponding to the subtree rooted at
the selected node is “erased.” The process can be continued, and, on exit, what
remains of the original tree is returned as a tree object. An example of the textual
information displayed during this process is as follows:

> zsnip.survey <- snip.tree(z.survey)
node number: 4
tree deviance = 562.518
subtree deviance = 741.663
node number: 10
tree deviance = 741.663
subtree deviance = 786.214
node number: 7
tree deviance = 786.214
subtree deviance = 962.767

Here we first selected and then reselected nodes 4, 10, and 7 of the tree z.survey:
Note how the subtree deviance at one stage becomes the tree deviance at the nexdt
stage. The graphical result of this process is displayed in Figure 9.11. The second

usage<12.5

emplrﬂ‘le_n\tS,U

ATT ATT

: G _] s
Figure 9.11: An dllustration of interactive snipping of subtwee;. dTh‘e fu!lt:efuzx;:;;\;g“zlt
3 : selection of a node, the change in deviance tha

plotted in the first panel. Upon se le, U de . o
1y that node is displayed. If it is reselected,

by snipping off the subtree rooted at : ; s

1 i ; i the subtree from the dendrogram.

is snipped off, which has the side effect of erasing

secongppanel shows what remains of the tree after the subt‘rees rooted at nodes 4, 10, and

7 are snipped off. The final panel replots and labels the snipped tree.

panel shows the result of snipping off the subtrees rooted at node-s 4,T111Q, an(fln:’é
The final panel replots the snipped tree zsnip.survey and labels it. is t%(;l s
out one reason for snipping—gaining resolution at the top of the tree 50 e
can be usefully labeled. The node numbers of the branches thfathwere sn;[él?ert "
are collected together and pasted into the call (':OHI-pOIleIlt of the gee : C:]m,.tree
inform the user that the result was obtained by snipping nodes so-an -so fr
such-and-such. For example, the call component of zsnip.survey is

> zsnip.survey$call
snip.tree(tree = z.survey, nodes = c(4, 10, 7))

The function select.tree() is the dual of snip.tree(). It allows (;ndw;ﬁg::
Subtrees of a specified tree to be selected and assigned. For eaclllfno fwrgis et
Supplied. the function returns a tree object rooted at that -node.z. n(t)' odes e
supplied; the function expects them to be selected by graphical mterfa.c (110, : e
More than one node is specified or selected, the subtrees are organize a,sb la aﬁ
With the node number naming the individual elements. One might reasonably ¢

308 CHAPTER 9. TREE-BASED MODELS f

stand.survey[['4']] stand.survey([['107]] stand.survey[['7]]

Figure 9.12: An illustration of a stand of trees. The three panels contain the subtrees of =

z.survey that were snipped off in Figure 9.11. Euach tree in the stand is amenable to all
methods for tree objects, including plot methods. The panels in the figure were obtained by
applying the plot () method to the stand stand.survey.

such a list a stand (of trees). An interesting feature of stands results from the fact
that the trees it contains are bona fide tree objects. Thus, they are amenable to
any and all display and analysis functions for trees. A useful way to peruse a stand
is by applying a function to it using apply). For example, Figure 9.12 is obtained
by the expression

> stand.survey <- select.tree(z.survey, nodes = c(4, 10, 7))
> sapply(stand.survey, plot)

Like snip.tree(), the subset method for tree objects, "[.tree"(), is a convenient
shorthand for select.tree(). For example, z.surveyl[c(4, 10, 7)] is equivalent
to the expression given above for stand.survey. Also like snip.tree(), the call
component of a selected subtree is constructed to inform the user that the result
was obtained by selecting subtree so-and-so from tree such-and-such.

9.2.4 Examining Nodes

Much information concerning a fitted tree resides in the nodes. It is important
that this information be readily available, and yet, there is too much information t0

g2 S FUNCTIONS AND OBJECTS 309

sefully label a dendrogram with. We now introduce some tree-specific functions to
pncOUIAgE users to browse the nodes of a fitted tree-based model. Let’s introduce a

IHBW example based on the data frame cu.summary described in Section 3.1.1. The

Jata are summarized as follows:

summary (cu. summary)

Price Country Reliability
Min. : 5866 USA :49 Much worse :18
1st Qu.:10090 Japan :31 worse #12
Median :13150 Germany :11 average 126
Mean :15740 Japan/USA: 9 better : 8
3rd Qu.:19160 Sweden : 5 Much better:21
Max. 141990 Korea : 5 NAs 732

(Other) : 7

Mileage Type

Min. :18.00 Compact:22

1st Qu.:21.00 Large : 7
Median :23.00 Medium :30
Mean :24.58 Small :22
3rd Qu.:27.00 Sporty :26
Max. :37.00 Van 110
NAs :57

The model we entertain addresses the relationship of automobile characteristics to
automobile reliability. The fitted tree-based model is obtained by the expression

> f.cu <- formula(Reliability ~ Price + Country + Mileage + Type)
> z.cu <- tree(f.cu, cu.summary, na.action = na.tree.replace)

and is plotted in Figure 9.13. Since this is a classification tree with a five-level
response variable, much information has been suppressed in the labeled dendrogram.
Node contents may be inspected with the browser() method for trees, which takes
a tree object as a required argument and an optional list of nodes. If the latter
is omitted, the function waits for the user to select nodes with the graphics input
device. For example, clicking on the left-child of the root node of the tree z.cu
yields:

> browser(z.cu)
node number: 2

split: Country:Japan,Japan/USA

n: 27

dev: 36.9219

yval: Much better

Much worse worse average better Much better

0 0 0.1111111 0.1111111 0.7777778

a;;:iéé
59/85
Country:Japan,Japan/USA

Country:Germany,Korea,Mexico,Sweden,USA

uch bettpr

4 averagje
35758
Price<12197 Type:Compact,Small
/ Prlce>1\21 97 Type:Large,Medium,Sporty,Van
uch ben%r LICI:I t;ett r worge av_era_ge
A4 6/13 14/22 18/36
Type:Compact,S Country: i
porty un ry.Gerfmany,Mexllco Type:Sporty

{
Type:Medium,Van Country:Korea,Sweden,USA Type:Large,Medium,Van

bette R{uch ben%r herage \;;J;SE I\tiu-:;h wo_r#(e a\;;araae
5/8 ! 9117 29 11727

Mileage:23+ thr:.l 27,27+ thru 37 Type:Medium
\
Mileage:21+ thru 23,NA

Type:Large,Van

better L warse a\;are;r:;e a\;r_ergae
&0 & 31

Mileage:17+ thru 21,21+ thru 23 Price<15770
\
Mileage:NA Price>15770

ave r;g; |a_w;rage

worse

Flggre 9.13: A display of a tree fitted to the automobile reliability data. The responsé
variable has levels Much Worse, worse, average, better, Much Better The. redicted valu€
c.)f the re.spon.se variable is centered in the node. The number unde;" eac‘hptef"mmal node
is the misclassification error rate. The split at the root node suggests that Japanese o™

’h’]h.ethfe man’umctu ed he e .0 ab Oﬂ.d, h =)
f] 5 iy)
T / oy T T T T ave much better per CC“)Ed 7 Cilﬂllnlﬂ Yy than cars

The identify() method also takes a tree object as a required argument and an
optional list of nodes. If the latter is omitted, the function waits for the user to
select nodes from the dendrogram. The function returns a list, with one component
for each node selected, containing the names of the observations falling in the node.
For example, clicking on the leftmost node of the tree z.cu yields:

> identify(z.cu)

node number: 4
Acura Integra 4
GEQ Prizm 4
Honda Civic 4
Mazda Protege 4
Nissan Sentra 4
Subaru Loyale 4
Toyota Corolla 4
Toyota Tercel 4
Honda Civic CRX Si 4
Honda Accord 4
Nissan Stanza 4
Subaru Legacy 4
Toyota Camry 4

The “a” following each automobile name is actually part of the name (these are all
four-cylinder cars) and has nothing to do with the fact that node 4 was selected. If

the result of identify() is assigned, these names can then be used as subscripts to

examine data specific to individual nodes. The following expressions demonstrate
how the predictor Price varies for observations in nodes 2 and 3:

> node2.3 <- identify(z.cu, 2:3)

> qua.ntile(Price[nodeQ.3[["2"]]])

[1] 6488.00 9730.50 12145.00 17145.25 24760.00
> qua.ntile(Price[node2.3[["3"]]])

[1] 5899.0 9995.0 13072.5 20225.0 39950.0

Nodes 2 and 3 are the left and right children, respectively, of the root node. Given
that the more reliable cars follow the left path rather than the right, apart from the
least, expensive automobiles, it appears that you pay more for more troublesome
cars!

The function path.tree() allows the user to obtain the path (sequence of splits)
from the root to any node of a tree. It takes a tree object as a required argument and
an optional list of nodes. If the latter is omitted, the function waits for the user to
select nodes from the dendrogram. The function returns a list, with one component
for each node specified or selected. The component contains the sequence of splits
leading to that node. In interactive mode, the individual paths are (optionally)
Printed out as nodes are selected. The function is useful in those cases where tree

402 CHAPTER 9. TREE-BASED MODELS

size or label lengths are such that severe overplotting results if the tree is]a}
indiscriminately. For example, selecting one of the deep nodes of the tree
yields:

eled
Z.cu .

> path.tree(z.cu)

node number: 26
root
Country:Germany,Korea,Mexico,Sweden,USA
Type:Compact,Small
Country:Korea,Sweden,USA
Mileage:23+ thru 27,27+ thru 37

By examining the path, we can see that the automobiles in this node consist of
those manufactured in Korea, Sweden, and USA, which are compact or small, apnq
for which the reported mileage is between 23 and 37 mpg.

9.2.5 Examining Splits

The tree grown to the automobile reliability data suggests that Japanese cars,
whether manufactured here or abroad, are more reliable than cars of other na-
tionalities. Should we believe this? The answer in general is no; the recursive
partitioning algorithm underlying the tree() function is just that: an algorithm,
There may well be other variables, or even other partitions of the variable Country,
that discriminate reliable from unreliable cars, but these just miss out being the
“best” split among all possible. The function burl.tree() allows the user to select
nodes and observe the competition for the best split at that node. For numerie
predictors, a high density plot is used to show the goodness-of-split at each possible
cut-point split. For factor predictors, a scatterplot plot displays goodness-of-split
versus a decimal equivalent of the binary representation of each possible subset split;
the plotting character is a string labeling the left split. Figure 9.14 provides an ex-
ample for the tree z.cu. The plots under the dendrogram show a clear preference
for splits involving the variable Country. Figure 9.15 is an enlargement of the scat-
terplot for Country. We see that the candidate splits divide into two groups, one of
which (top) discriminates better than the other (bottom). Among those in the top
portion, that labeled ef=Japan, Japan/USA is the best; moreover, it is the common
intersection of all the candidate splits in the top portion. Given this information,
we are more likely to believe that this split is meaningful.

The function hist.tree() also focuses on splits at specified or interactively se-
lected nodes by displaying side-by-side histograms of supplied variables. Specifi-
cally, the histogram on the left displays the distribution of the observations on that
variable following the left split, while the histogram on the right displays the distri-
bution of the observations following the right split. It is similar to burl.tree() in
that it displays a variable’s discriminating ability, but is different in that it allows

92 S FUNCTIONS AND OBJECTS

403

Cuumry:Japsgn,JapanfUSA

Type:ComLct Small

Price412197

Type:Compact,Sporty Country:Gerfnany,Mexico Type:

Much better

Mileage:23+ thr Type:Medium

better Much better average

27,27+ thru 37
Much worse

Mileage:17+ thry 21,21+ thru 23Price<15770

better worse
worse average average average
Price Country Mileage Type
el CL
t dem
o9 aigh e L
defg delgh dethfghs el defi
dafghi datgi
L] .
lde dah
t ehi al i
ool ™ den agn eg dei — o " ade
et o B By s g
o0 g coniation Y aigh o o c b 0| |2, 6 e
‘abd”
] n”l"'\llmh\lﬂl il HIH 1a a0 bogne™ ab " od bagy e ol

Figure 9.14: An illustration of burling a tree-based model. The top panel displays the labeled
dendrogram of z.cu; initially, the lower portion is empty. Upon selection of the root node,
the plots in the lower four panels are displayed. These show, for each predictor in the
model formula, the goodness-of-split criterion for each possible split. The goodness-of-split
criterion is the difference in deviance between the parent (in this case the root node) and its
children (defined by the tentative split); large deviance differences correspond to important
splits. For numeric predictors, a high-density plot conveys the importance of each possible
cut-point split. For factor predictors, an arbitrary ordering is used along the abscisse (-
awis) to separate different subset splits; the left split is used as a plotting character. The
ordinate (y-axis) of all plots is identical. These plots show that, at the root node, Country
is the best discriminator of automobile reliability. It also shows that there are many good
subset splits on Country, the “best” being the one labeled ef in the upper left. Upon selection
of another node in the dendrogram, the lower portion of the screen is erased and refreshed
with four new panels displaying the splits relevant at that node.

404
CHAPTER 9. TREE-BASED MOpgpq
§

ef
efh
det defh
o B ofg efgh efhi efi
e def)
§ 9 deigh defhi efghi efgi defi a Brazil
8 defghi defgi b England
£ 2 4 ¢ France
ué’ d Germany
= C eh e Japan
& de ; deh . f Japan/USA
& eg e%:n th ehi i | 9Korea
o9 degded dehi aghi ; | hMexico
L df fgﬂf fhi deegg|1 fi dei i Sweden
g gdgh digh i, Cfgeat :
dithi g) g~ gl j USA
; ; o . i rgfgh: cljfgidfl i —
0 T
10 20 30 40 50 60

Decimal equivalent of binary subset split

.g H o A f]
SCattErplﬂt 0, the Competzng Subset splzts on Country al the Toot Ud f
[;] ire 9.15 y node g d

the tree z.cu.)
s e Tnd t:veg T;i}ecfizzted ch;rc;cter strings are the left splits; none contain j si :
. ry and, by construction des in riah : tnce g

eoninin sl e autarnskil , resides in right splits only. N
es from these countri : Y. No subsets

the respo i i A ries were omitted due to missi
was on fwzseT?;larzable Reliability; this occurred silently by na.tree.re 1'(:25?(?9 ;:ﬂlues 4
ths e a.utor::z;re _not;mgleton splits for d, g, h, or i since these co]::unt;es;: s
five. The splits Seeﬁi 1;:) 2 € :;wa;el frame and the algorithm has a minimum subsi:es{:we;
f wide into two groups: th : : e o
(upper port : o groups: those having good discriminati :
coifainp ! ion), anfi th?se having mediocre to poor power (lower porti awads
of, supporting its selection as the best discriminating subp 3 on). The former all
! set.

variables other than predictors to be displayed. Figure 9.16 provides a)t
. n example

T T Y - p
- .
or t IIF' ee z.cu ﬁ‘ t e(i to t he a.lll OmOblle IEIIdhlllt da.ta Tlllb exam le {eSUItved

5 hi .
hist.tree(z.cu, Reliability, Price, Mileage, nodes = 1)

At a glanc istributi

i nogd o 2ea:3 Zezet}tlléec }clf)lglplete distribution of the response variable Reliability

Bt e }i 1'.61;1 nodn'es of the root). It is interesting that not a single

e e erig t split. The second panel (Price) graphically conveys
halysis using identify() suggested: that the most reliable cars ai,e

not the most expensive on
. ; es. It a b s
it Shses At ppears that status and reliability are incompatible

9.2. ¢ FUNCTIONS AND OBJECTS e

Country:Japan,Japan/USA

:Compact,Small

Price<12197

Much better

Mlleage:23+ thry 27,27+ thru 37
better Much betteaverage Much worse

1,21+ thrPEBe<15770

Mileage:17+ thru 2
better worse

worse average average average

Reliability i Mileage

T dE . S

Figure 9.16: A illustration of the function hist.tree() af the root node of the automo-
pile reliability tree z.cu. The upper portion of the plot contains the labeled dendrogram.
The lower portion displays o side-by-side histogram for each of the variables Reliability,
price, and Mileage. The left-side histogram summarizes the observations following the left
split, and similarly for the right. The figure shows that Japanese cars manufactured here
or abroad tend to be more reliable, less expensive, and more fuel efficient than others.

9.2.6 Examining Leaves

Often it is useful to observe the distribution of a variable over the leaves of a
tree. Two related (noninteractive) functions encourage this functionality. They are
noninteractive since they do not depend on user selection of a particular node; their
intended effect is across all terminal nodes. The function tile.tree() augments
the bottom of a dendrogram with a plot that shows the distribution of a specified
factor for observations in each leaf. These distributions are encoded into the widths
of tiles that are lined up with each leaf. If numeric variables are supplied, they are
automatically quantized. One use of this function is for displaying class probabilities
across the leaves of a tree. An example is displayed in Figure 9.17. A related
function rug.tree() augments the bottom of a dendrogram with a (high-density)
plot that shows the average value of the specified variable for observations in each
leaf. These averages are encoded into lengths of line segments that are lined up with
each leaf. The function takes an optional argument, FUN=, SO that summaries other
than simple averages (e.g., trimmed means) can be obtained. Figure 9.18 displays

e et T T

T T ==
..‘.\H.HIHlW \m]\un\)ml’!]l

I Figure 9.18: The dendrogram of the long-distance marketing tree z.survey enhanced with
a rug of the variable usage. The distribution of this variable over the leaves of the tree is
readily discerned. Successive calls to Tug.tree() with other variables is encouraged by not
replotting the dendrogram—only the new rug is plotted after the bottom screen 15 erased.

| R TP T Y P T BT) PR

I;}g;:‘e 9.1?: The dt.znd?"ogmm of the automobile reliability tree z.cu enhanced with a tiling
: ed'igamqble Rellabllity.. The distribution of Reliability over the leaves of the tree
is readily discerned. Successive calls to tile.tree() with other variables is encouraged by

not replotting the dendro - iling is ;
i} g gram—only the new tiling is plotted after the bottomn screen @

the dlsf'tribution of the variable usage for the tree grown to the market survey data.
Recz}lhng that the split at the root node was usage < 12.5, the general shapg of the
rug is as expected: lower on the left and higher on the right. Somewhat unex ected
is the fact that the heavier users are, by and large, much heavier users "

More generally, nodes at depth d are integers 7, 24 < n < 24+, Of course, any
‘Specific tree is not full and consists of a subset of all possible nodes. The ordering
'of the nodes in the frame corresponds to a depth-first traversal of the tree according
to this numbering scheme.

The elements (columns) of frame contain the fo

e the variable used in the split at that node (var)

llowing node-specific information:

9.3 Specializing the Computations

A d - - - . . - 1

. s- eS(czlrlbfd 1;1 the precedlng sectmn,‘ the tree object is a repository for a number of e the number of observations in the node (n)
y-products of the tree-growing algorithm. The named components of a tree object

ALe * a measure of node heterogeneity (dev)

> [ngunes(z. survey) e the fitted value of the node (yval)
1] "frame" "where" "t woom "
© armal Mgall o the matrix of left and right split values (splits).

Routine application of the functions in this chapter does not require users to ma-

I'?Dula.te this object directly, but for concreteness we display the 21 row z.cu$frame
lere:

The frame component is a data frame, one row for each node in the tree. The
row labels, rou.names (frame), are node numbers defining the topology of the tréé
Nodes of a (full) binary tree are laid out in a regular pattern:) y

408 CHAPTER 9. TREE-BASED MODpyg

var n dev yval splits.left splits.right
1 Country 85 260.997544 average cef :dghij
2 Price 27 36.921901 Much better <12197 >12197
4 <leaf> 14 0.000000 Much better
5 Type 13 26.262594 Much better rae it
10 <leaf> 8 17.315128 better
11 <leaf> 5 5.004024 Much better
3 Type 58 146.993133 average rad :bcef
6 Country 22 59.455690 worse :dh 1gij
12 <leaf> 5 6.730117 average
13 Mileage 17 42.603572 worse icd :be
26 <leaf> 7 15.1056891 better
27 <leaf> 10 19.005411 worse
i Type 36 68.976020 average e :bef
14 <leaf> 9 9.534712 Much worse
16 Type 27 50.919255 average i :bf
30 Mileage 16 33.271065 average :ab e
60 <leaf> 7 14.059395 worse
61 <leaf> 9 16.863990 average
31 Price 11 12.890958 average <15770 >15770
62 <leaf> 5 6.730117 average
63 <leaf> 6 5.406735 average

This example illustrates a labeling convention specific to trees whereby levels
of factor predictors are assigned successive lower-case letters. Thus, the first right
split, :dghij (on Country), is shorthand for :Germany,Korea,Mexico,Sweden,USA. Such
a convention is necessary in order to provide meaningful information about splits
in a limited amount of space. The problem is particularly acute for labeling plotted
dendrograms but is also important in tabular displays such as that resulting from
print (). The labels() method for trees allows full control over which style of labels
is desired; it is usually invoked by printing and plotting functions rather than called
directly by the user.

In the case of classification trees, an additional component of the frame object
is the matrix (yprob) containing the class probability vectors of the nodes labeled
by the levels of the response variable. We omitted this in the above display of
z.cu$frame in order to conserve space.

The where component of a tree object is a vector containing the row number
(in frame) of the terminal node that each observation falls into. It has a names
attribute that corresponds to the row.names of the model frame used to grow or
otherwise define the tree. Like the frame component, it is heavily used in many
of the functions that manipulate trees. For example, the vector of fitted values is
obtained as z$frame[z$where, "yval"]. The remaining components, "terms" and
"call", are identical to those described in previous chapters.

| 9.3. SPECIALIZING THE COMPUTATIONS 409

We emphasize that for the most part you will not have to look directly at the
yalues of these components. However, in order to modify the behavior of any of
the supplied functions, or to construct new ones, you should first feel comfortable
manipulating these components. For example, consider the following function (pro-

' yided in the library):

meanvar.tree() <- function(tree, xlab = "ave(y)",
ylab = "ave(deviance)", ...} {
if(!'inherits(tree, "tree"))
stop("Not legitimate tree")
if('is.null(attr(tree, "ylevels")))
stop("Plot not useful for probability trees")
frame <- tree$frame
frame <- frame[frame$var == "<leaf>",]
x <- frame$yval
y <- frame$dev/frame$n
label <- row.names(frame)
plot(x, y, xlab = xlab, ylab = ylab, type = "n", ...)
text(x, y, label)
invisible(list(x = x, y = y, label = label))

}

This function uses only the frame component to produce a plot of the within-node

" yariance (dev/n) versus the within-node average (yval) for numeric responses. The

node number is used as the plotting character. This plot is useful for assessing the
assumption of constant variability throughout predictor space. If trend is apparent
in the plot, a reexpression of the response variable y is recommended for proper
trees to be grown.

The functions we provide are intended to make the task of modeling data with
binary trees more pleasant and at the same time more powerful. The examples in
the previous sections showed how the user might directly use these functions during
an analysis. Of course, the functions can also be called by other functions and thus
form the building blocks for more specialized functions or even more complicated
manipulations of tree-based models.

The single best example illustrating the power of using the functions as prim-
itives in a more complicated function is given by the technique known as cross-
validation. Specifically, consider the problem of selecting the optimal tree in a
pruning or shrinking sequence. The general idea is that the deviances, used as
a measure of predictive ability, for any of the trees in the sequence are far too
optimistic—that is, too small—as they are based on the same data used to construct
the tree. It would be better—that is, less biased—to use an independent sample
with which to assess the predictive ability of any specific tree. Cross-validation
is an attempt to do just this where the original dataset is carved into K mutually
exclusive subsets, each of which will serve as an independent test set for trees grown

410 CHAPTER 9. TREE-BASED MODELS

on learning sets composed of the union of the K — 1 remaining subsets. F

of the .learning sets, a tree must be grown and a pruning or shrinkin- gOr -3
determined. The corresponding test set must then be dropped down tié iquenf:e
the sequence and some measure of goodness computed (e.g., misclassiﬁcatiorees 3
rate‘ or -dev1ance—we use the latter). These are then summed over the .ndermr
replications and displayed. An implementation is as follows: naes

?v.tree <- function(tree, rand, FUN = shrink.tree, ...)
if(!inherits(object, "tree"))
stop("Not legitimate tree")
m <- model.frame(object)
p <- FUN(object, ...)
if (missing(rand))
. rand <- sample(10, length(m[[1]]), replace = T)
which <- unique(rand)

cvdev <- 0
for(i in which) {

tlearn <- tree(model = m[rand != i,])

plearn <- FUN(tlearn, newdata = m[rand == i,], p$k)
} cvdev <- cvdev + plearn$dev S
p8dev <- cvdev
P

}

Apart f{"om some initialization steps, the function first sequences the original t

and assigns the result to p. In the for loop, we use two different high—gl;evel tree
manipulation functions. We first use tree() to grow a tree to the learnin moc;ele
m(rand != i, 1. This is followed by a call to the sequencing function shrinl% tr j)’
by default, to produce the sequence for the learning tree and to evalua:te the ss: o

for the model containing the test data, m(rand == i,]. Finally, the devia s o0l
summed across samples and returned for subsequent plotting. , T

Other functions for tree-based modeling are included in the library that h

not been explicitly mentioned in the text. Some are low-level utilit fuI{ctions tﬁv:
are called ‘py the high-level functions accessed directly by the user ();thers are hi ?1
level .functlons that are specialized for certain numerical or graphi-cal purposes ’lfg‘h(;
function ba'sis -tree() is an example of the former whereby an orthogona]pbaqis. for a
fitted tr‘ee is computed. There is one basis vector for each split and one for tkhe root
(the unit vector). A linear model fitted to this basis yields fitted values identical to
those _from the tree. This linear model representation of a fitted tree-based model is
sometupes useful for suggesting new methods for understanding trees (e.g., shrink-
age est}mation.) The functions post.tree() and partition.tree() ar;gé;caml les
of special purpose graphics functions. The function post.tree() does not reqﬁire

9.3. SPECIALIZING THE COMPUTATIONS 411

- - 1.000 -
. o o -
- -
0.882
_ + + 4 _
r 24) _ e
5 o
m -, -_—— —
+ o+
0.900 0.440
_ + 4+
R _ + +
+ —_— p—
+_.
= . - +
T

200

Age

Figure 9.19: A display of z.kyph[-c(5, 6)], a subtree of z.kyph depending on the variables
age and Start. The plot was obtained with the expression partition.tree(z.kyph[-c(5,
6)], label = "absent"). The data values appear on the plot as the plotting characters
4 7 These were added with the expression text(Age, Start, ifelse(Kyphosis

“_ Gmd b
== wabsent", "-", "+")). Three of the four regions are quite homogeneous; no apparent

structure is discernible in the remaining one.

activation of a graphics device, but rather that the user has access to a printer
compatible with the PostScript page-description language. The trees displayed in
Figures 9.3, 9.8, and 9.13 were produced by post.tree(). This “pretty printed”
display of a tree uses uniform vertical spacing of nodes and is more appropriate for
presentation than for diagnosis.

The function partition.tree() is peculiar to trees that depend on at most two
predictor variables. For a single predictor, partition.tree() displays the tree as
a step function, each step corresponding to a terminal node of the tree. This
display sacrifices the information in the tree o
leading to the leaf nodes, but gains familiarity of expression

bject concerning the sequence of splits
when one regards y

as a function of . The example in the right panel of Figure 9.1 was created with
partition.tree(). For two predictors, partition.tree() displays the partition of
the plane into homogeneous regions, each rectangular region corresponding to
terminal node of the tree. In certain cases it is possible to reconstruct the sequence
of splits giving rise to the partition from the display, although this is not the primary
intended purpose. An optional argument, label, allows the user to specify the
labels associated with the partition, the default being the fitted value yval. For
classification trees, a specific level of the response factor can be specified. Figure 9.19
demonstrates a two-variable example based on the subtree z.kyph[-c(5, 6)].
Certain enhancements to the display functions are desirable so that more in-

formation can be displayed subject to the constraint of minimal overplotting. For

example, the text () method for trees introduced in Section 9.2 allows an argument,
FUN=, to encourage users to explore interactive labeling. Suppose a user had a func-
tion, say brush(), which allowed one to paint on labels (say with button 1) as well

as erase them (say with button 2). By paint we mean that buttons are depressed

and held rather than simply clicked. Then one could selectively label a plotted den-
drogram in those cases where unrestricted labeling would conceal the dendrogram
itself.

A somewhat different specific proposal that we considered was displaying a his-
togram or a boxplot of the distribution of y at each node of the tree. This would
allow comparison of scale and shape changes as nodes are split in addition to loca-

tion differences, as is currently done. A function zoom.tree() might then be written

so that selecting a node might zoom in or otherwise provide an enlargement of the

histogram. This would necessitate some device-specific graphics functions, which

we have attempted to avoid.

9.4 Numerical and Statistical Methods

Tree-based models are defined most precisely by the algorithm used to fit them. =

The algorithm attempts to partition the space of predictor variables (X) into ho-
mogeneous regions, such that within each region the conditional distribution of ¥
given z, f(y|z), does not depend on &. We first present the algorithm and then
discuss the three essential components as regards our implementation.

Initialize: current node = root = {y; ,i =1,...,n}
stack = NULL

Recurse: for current node # NULL

Loop: for each z; partition z into two sets X ppr and Xgrogr such’ that
fW|Xcerr) and f(y|Xrrerr) are most different

Split node: split current node into Y gpr and Ygiour according to the x;
and the associated split that is best among all x’s

Test: if ok to split Yrigur
push Yrrgur onto stack
if ok to split Y err
current node = Yrprr

else pop stack

Partitioning the Predictors

" Predictor variables appropriate for tree-based models can be of several types: fac-
tors, ordered factors, and numeric. Partitions are governed solely by variable type
and therefore do not require explicit specification by the user. - ‘

If z is a factor, with say k levels, then the class of splits conilftls of all ;')o_sslll_)l(f
ways to assign the k levels into two subsets. In general, there are 277" —1 poss_lbllr;llea:
(order is unimportant and the empty set is not allowed). So, for example, if x has
three levels (a, b, c), the possible splits consist of albe, ab|_c, and b|f.1(l. . o

If 7 is an ordered factor with k ordered levels, or if = is nurperlc with k distinct
values, then the class of splits consists of the £ — 1 ways to div?de the levels/ valqes
into two contiguous, nonoverlapping sets. These spl%ts can be mdext?d by th-e Il’lll-d-
points of adjacent levels/values, which we call cutpoints. By convention, wa‘e imp. 1ct-
itly extend the range beyond the observed data, so that szt the left-most '(,utp;m ,
¢, defines the split —oo < z < ¢, and similarly for the r1ght-most c.utpomt. ot.e
that the values of a numeric predictor are not used in deﬁmng'sphts,.only their
 ranks. Indeed. it is this aspect of tree-based models for numeric predictors that

render them invariant under monotone transformations of .

Comparing Distributions at a Node

- We depart slightly from most previous authors on recursive partitioning meth?ds
" in that our view is more closely akin to classical models and methods for regression
- and classification data. Our view is that we are estimating.e.t step f.unc:tlon. ’."(:z:)f
- that is simply related to a primary parameter in the ‘COIldltIOPE.ﬂ dlstrlbu.monuo
" Ylz. The likelihood function provides the basis for choosing partlt}ons. Sp'eleﬁca Y,
We use the deviance (likelihood ratio statistic) to dete‘rmir.le which partition of a{:
Node is “most likely” given the data. The implementation 1s sx.lch t1.1at the type o
the response variable is the sole determinant of whether a clasmﬁcat'lon tree (fac.tor
TeSponse 1) or a regression tree (numeric y) is grown. The current 1‘111p1emtk3111ta.tt]}31;
- 1Bores any possible ordering of an ordered factor response variable; arguably, thi

should be exploited in the fitting.

414 e

The model we use for classification is based on the multinomial distribyg; 3
‘ on

where we use the notation, for example,

y = (0,0,1,0)

to denote the response y falling into the third level out of four possible. The vectop
p = (p1,p2.ps,pa), such that > px = 1, denotes the probability that y falls intr i
each of the possible levels. In the terminology of Chapter 6, the model consistg 0(} ’

the stochastic component,
yin(;Li), 7 = 1, e vy N

and the structural component

Hi = ’r(wt)
The deviance function for an observation is defined as minus twice the log-likelihood,
_ e
>
’ D(pisyi) = —2) yin log(pir). Wi e NS
o ¥ P X\
WAt k=1 Jh L

The model we use for regression is based on the normal (Gaussian) distribution
consisting of the stochastic component, ’

yimN(#‘isUz)u 1= 11"'7N

and the structural component

pi = 7(x;).
The deviance function for an observation is defined as
D(pi i) = (yi — pa)?,
which is minus twice the log-likelihood scaled by o2, which is assumed constant for
all 7.
At a given node, the mean parameter g is constant for all observations. The
maximum-likelihood estimate of y, or equivalently the minimum-deviance estimate,
is given by the node proportions (classification) or the node average (regression).
The deviance of a node is defined as the sum of the deviances of all observations

in the node D(ji; y) = Z":D_-(ﬂ;' yij;_Tlle;deviance_i__s identically zero if all the y’s are

the same (i.e., the node is pure), and increases as the y's deviate from this ideal.

Splitting proceeds by comparing this deviance to that of candidate children nodes
that allow for separate means in the left and right splits,

D(fiz, fimsy) = Y D(fniys) +) D(priyi)
L R

The split that maximizes the change in deviance (goodness-of-split)

AD = D(ji;y) — D(jir, fir; y)

is the split chosen at a given node.

CHAPTER 9. TREE-BASED MOppy s‘

9.4. NUMERICAL AND STATISTICAL METHODS 415

Limiting Node Expansion

The above discussion implies that nodes become more and more pure as splitting

rogresses. In the limit a tree can have as many terminal nodes as there are obser-

| ations. In practice this is far too many, and some reasonable constraints should be

applied to reduce the number;uWé use two different criteria for deciding if a node
is suitable for splitting. Do not split:

o if the node deviance is less than some small fraction of the root node deviance
(say 1%); and

o if the node is smaller than some absolute minimum size (say 10).

These limits are implemented through the arguments mindev and minsize, respec-
tively, in the function tree.control(). The current defaults are given above in
parentheses.

The default is quite liberal and will still result in an pverly large tree with roughly
N/10 icfg"r_ghiil:a,—lfﬁc—ideé.' This is intentional and mimics “best current practice” in
recursive partitioning methods. Indeed, the major problem of early tree-building
algorithms was deciding when to stop expanding nodes. It was indeed critical as the
tree was built in a forward stepwise manner, and once the final node was expanded,
modeling was complete. The approach we adopt is not to limit node expansion in
the tree-growing process. Instead, an overly large tree is grown, and one must decide
which branches to prune off or find some other way account for overfitting (e.g.,
recursive shrinking). The difference in the approaches is similar to that between
forward and backward stepwise selection of variables in linear models. Forward
methods can be fooled when the best early split does not meet the criterion of
splitting and tree growth is halted—when in fact this split is necessary to clear the
field for very important succeeding splits. The example of looking for interactions
in linear model residuals provides an illustration.

The design of our functions had this concept in mind from its inception, pro-
viding a simple interface to growing a large tree, while providing a collection of
interactive functions to inspect nodes, identify observations, snip branches, select
subtrees, etc. Our recommended approach to tree building is far less automatic
than that provided by other software for the same purpose, as the unbundling of
procedures for growing, displaying, and challenging trees requires user initiation in
all phases. We now turn to another issue that also requires the user to get involved
in the modeling process.

9.4.1 Handling Missing Values

Tree-based models are well suited to handling missing values and several possibili-
ties exist for building trees and predicting from them in the face of NAs. For tree

=~ o

1 ues
building itself, the current implementation of tree() only permits NAs in predictors;; 9.4.2 Some ComPUtatlonal fss
and only if requested by the special na.action() for trees, na.tree.replace(). The!
effect of this function is to add a new level named "NA" to any predictor witﬁ_
missing values; numeric predictors are first quantized. The net effect of using-l.
na.tree.replace() is that the new variable is treated like any other factor as re.
gards determination of the optimal split. If x has three levels (a, b, ¢), the candidate
splits accommodating missing values are NA|abc, NAa|be, NAab|c, NAb|ac, NAc|ab,
NAbcla, and NAac|b. Other possible ways to adapt tree() to allow missing val-

ues in ordinal and numeric variables would likely require changes in the underlying
algorithm. .

snou (0) i i (S e ele tj t]: € ,Str
1 h].d e clear dt a a.h: al unt Uf C()Iﬂpu ation 18 1 ,qull‘ d to S 1 C 1 €
B t b th P P f te 1:

i 4 given node. The algorithm underlying tree—bas?d mgciels is clomputa:va;
;s_pllt_at - oy Although it is possible to implement it entirely in the S angu(z;,g : N
@l,;;}gsl:nitsstsézfl-to Writegseveral of the underlying routines 31 C. i\/l;)%(t:)ha;ﬁl :;SS gr:rfor
E i itvar.c, and vsplit.c),

b ﬁCtU:al tree_gmmgrgldpiiii?k&s:im;'nc(;t;i;lgraefﬁcient pred%ction (pred.c), and,
o (Pr‘;ne 'ccharacter manipulation (btoa.c) and printing labels (Pﬂab'cgé
] L Others’llor ot have to deal with this underlying code, but‘ there are cas °
%/I]:(:S:euiimij :friavzidable z'md even desirable to modify C(')fhil at ;hll(;saga;;li Ii;;); gom
. i sed to be compiled an :
. ?ﬁecn Ultmtl?tzlg;, esi;liilileil?: %fli Islgise that excessive computa,t‘ion is avmdleld
e H'nplenllfnt?:) lothe assessment of split optimality (AD)is done. mcreTnenta y
b ur fj!at’mg, " El’s fle 01‘1ce for a particular split. Further computatlon?l 1111pr‘oc;lna(-1
:&ﬂ:erﬁ 1FSZTQSET: fo? splits of factor predictors (where it ifl neededtllrlfjtghep:‘);; a(;e
R : 3 is is the case,
- m'lme‘rick olr Ijsoi-tt}f:j?;c‘;‘gf ({Z;elbb.e 1112(3:111’00 order the le_vels-so tha%t tthe
P Of' e o telrfe k — 1 contiguous splits after reordering. This fal}s fqr tac 1())2
?::;()SIE)E}:;]fvilllll(;ﬁ%)re t.hz;mn two levels since it is unclear how a reordering 18 tO

effected.

As described earlier on page 392, the approach we adopt for prediction is that
once an NA is detected while dropping a (new) observation down a fitted tree, the
observation “stops” at that point where the missing value is required to continue
the path down the tree. This is equivalent to sending the observation down both
sides of any split requiring the missing value and taking the weighted average of
the vector of predictions in the resulting set of terminal nodes. We chose this
method over that based on so-called surrogate splits because we believe it to be
less affected by nonresponse bias. A surrogate split at a given node is a split on
a variable other than the optimal one that best predicts the optimal split. If a
new observation is being predicted that has a missing value on the split-defining

variable, then prediction continues down the tree so long as there is data on the
variable given by the surrogate split.

9.4.3 Extending the Computations

We note in passing another function concerned with missing values. The function
na.pattern() enumerates the distinct pattern of missing values in a data frame,

t ge I|e_'[‘ W, tl th T W . f
f (o] IT F ee: ba.sed InOdelS can be exteﬂded t() I‘E!SpOIlSB Var].ables fI'OI’Il t.h.e CXponentlH.l anl-
0] 1n e IlllIIlbeI 8] C €Nnces. O1 exan]p e

: i lass of gen-
ily of distributions f(y; #) described in Chapter 6. This .results 211;;15 (ff A respi;nse
leralized tree-based models (GTMs), whereby the B C(zmptura.l component is
1-13 assumed to be an exponential family member ?n(ljl ft};zifyrgics ‘tributions e

i for exponential 1a i
described by a tree structure. Thus, ' Tiseus pres
a 15;::1 prggreq%ion of models of the structural component afforded by linear p

ree-based
‘dictors (GLMs, Chapter 6), additive predictors (GaMs, Chapter 7), and tree

ion i i i d as the only
1 inci .xtension is quite straightforwarc _
- iy e o Eh rm of the deviance function. Note in

sy is in the fo .
change to the existing software 1s 1 i o e estimate of
Datti%ular that specification of a link function is not necessa.rj{ ?mﬁ thsistributions.
I in each node is the within-node average for all exponentia a:nl y Sffset is used.
However, link specification would be necessary in the evelrllt .tha A failhe wi;ghin—node
More im,portantly an offset induces iteration in t}iz claltcu d‘fmenqghttmg A
: 24 : S, determine ¢ S
fitted value. For computational efficiency, one wou - afe £ COD
an approximation to the deviance, say the scr?re function, a.II)ld r?n;zt;rmined. T
Vergence once a candidate variable and splitting rule h.a. ‘rel eelount £e1ative to the
Would increase the amount of computation by only a.tmla A
- Current implementation for classification and regression.

> na.pattern(market.survey)

0000000000 0000000011 0000000100 0000100000 0001000000 0010000000
759 16 4 3 2 1

0100000000 0100000011 0100010000 0100100000 0100110000 0101000000
168 1 2 5 4 10

0101100000 0101110000 0110000000 0110100000 0111110000
' 1 8 2 2 12

indicates that all but 241 observations were complete, and of these 168 had informés
tion missing on the second variable (income!) alone. The remaining 73 observation®

have a variety of patterns of missing values; of these, all but 26 have income amoB&
the missing fields.

ol

418 CHAPTER 9. TREE-BASED MODRyg

Another possible generalization is the enlargement of the class of splitting ruleg
allowed by our tree-growing algorithm. Specific possibilities include linear comp;.
nation splits for selected sets of numeric predictors, as well as boolean combinationg
whereby splits on individual factor predictors are ANDed and ORed to form a sjy.
gle split at a node. A convenient user interface is obtained by allowing a matrjy
data type in the formula expression supplied to tree(), such that columns of the
matrix represent the individual variables to be combined: a matrix of numeric vari-
ables for linear combination splits, and a logical matrix for boolean combinatiop
splits. Thus, splits for these variable types are defined implicitly just as they arg
for numeric predictors and factors. The computational complexity of such splitting
is unwieldy, and only suboptimal selections using heuristics are likely to be feasible,

Another interesting possibility is to consider hierarchical or conditional variableg
that are typical of surveys. For example, depending on whether or not a person is
head of household, certain sections of a survey are not completed by the respondent,
For others, the values for the entries in these sections are missing, not at random, bug
because of the structure of the instrument. Tree-based models are particularly adept
at capturing these types of data since by decomposing the sample into homogeneous
subgroups, the responses to the conditional part of these questions are appropriate
once the primary variable has been used in a split. It would seem that a useful way
to implement such variables is through an activation bit, which is on for all primary
variables, but gets turned on for the secondary ones only when their primary variable
is used in a split.

Bibliographic Notes

The introduction of tree-based models in statistics, particularly statistics for the
social sciences, is due to Sonquist and Morgan (1964). An implementation of their
ideas was realized in the computer program AID (Automatic Interaction Detection),
which served to stimulate much subsequent research, such as THAID (Morgan and
Messenger, 1973) and cHAID (Kass, 1980). These methods differed primarily in the
stopping rules used to halt tree growth.

The inclusion of a chapter on tree-based modeling in this book is due to the
influence of the work on classification and regression trees by Breiman et al. (1984).
Besides masterfully presenting the material to the mainstream statistical audience,
they are responsible for several important pioneering ideas that have redefined the
state-of-the-art of tree-based methods. The primary innovation was not to limit
node expansion in the tree-growing process. They recommended growing an overly
large tree and spending one’s effort deciding which branches to prune off. Their
method of determining a pruning sequence, based on the concept of minimal cost
complezity, forms the basis for the function prune.tree(). Subsequent work by
Chou et al. (1989) generalizes this concept to other tree functionals besides tree

9.4, NUMERICAL AND STATISTICAL METHODS 419

ize. Their other important innovation was the introduction of surrogate splits to
rovide a mechanism to grow trees and make predictions in the presence of NAs
and also to provide a measure of variable importance.

Our methodology parallels that of Ciampi et al. (1987) in the use of the like-
Jihood function as the basis for choosing partitions. This is a departure from that
of Breiman et al. who use a variety of measures for tree growing and subsequent
pruning. The precise definition of the shrinkage scheme discussed in Section 9.2 is
also based on the likelihood (deviance) function. Recursive shrinking of tree-based
models is a relatively new application of shrinkage estimators due to Hastie a:nd
pregibon (1990). It has not been used as extensively as cost-complexity pruning
nor have extensive comparisons been performed with it.

The computational shortcut for enumerating subset splits for factors and_ nu-
meric responses dates back to Fisher (1958). This shortcut extends to binary re-
sponses but not to factor responses with more than two levels. Chou (198.8_) suggests
a heuristic that restricts search to a (possibly) nonoptimal set of partitions. The
gplit produced by the heuristic gets closer to the optimal split as the number of. the
Jevels of the factor increase—exactly the case where exhaustive search is infeasible.

The current implementation of tree() does not incorporate this heuristic.

S

