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1 Introduction

This document is a primer on the GWR library for the R statistical programming
language. This library includes a number of routines for calibrating GWR models
(Brunsdon, Fotheringham, and Charlton 1996), and also some visualization tools.
It is assumed that the reader already has some knowledge of R. If not, a good start-
ing point is the documentation available from the R web pages, and also Venables
and Ripley (1999). The latter is actually based on S-Plus rather than R, but the
two packages have much in common.

Where possible the use of the library is similar to the use of other R libraries
- and as well as the GWR subroutines themselves, training data sets, help files
and HTML help pages are also supplied. This document will demonstrate how to
install the library, work through a few examples of its use and hint at some more
advanced uses. A number of appendices are also provided, mainly to supply some
technical details. There will be several practical examples in the text. Commands
that the user must type in to R are shown in this font. When output from R
is shown, it will be shown in the same font, but when possible it will be coloured
in red.



2 Getting Started with the GWR Library

Like all R code, the GWR code has to be loaded after R has been started. To do
this, type

source(gwr4)

at the prompt.

The core routine in the library is called gwr. To see how this is used, firstly
we need some data. In this case, we will use crime and house price data from
Columbus, Ohio (Anselin, Bera, Florax, and Yoon 1996). To load the data, enter

data(columbus)

This consists of 49 observations and 5 variables, stored in the data frame columbus.
Typing

colnames(columbus)
gives the names of the five variables:
[1] "East" "North" "Crime" "Homeval' '"Income™

These are, respectively, the coordinates of the centroids of 49 zones in and
around Columbus, the per capita crime rate, the average home value and the av-
erage annual income for each zone. The gwr routine in its basic form requires
three arguments: X, y and loc. X is a matrix of predictor variables for the re-
gression model, and y is the response variable. Finally loc is a two-column
matrix containing the coordinates of each of the observations. The value returned
is a list containing various items of information relating to the calibrated GWR
model. Thus, to apply gwr to the columbus data, we must first extract these vari-
ous columns from the data frame. One way of doing this is by array index subset
selection:

X <- columbus[,c(3,5)]
y <- columbus|,4]
loc <- columbus[,c(1,2)]

We may now run the GWR routine. The result is stored in a variable called
model 1.

modell <- gwr(Xx,y,loc)



This in itself is not very informative. However, model1 can be “unpacked” to
discover the results of the GWR analysis. As mentioned earlier, this variable is
a list of named items. Two important items are called est and se. These are
respectively the estimates and standard errors of the GWR coefficients at each
observation’s coordinates. These can be viewed by typing

modell$est
and
model1$se

The former gives a response as below:

Intercept Crime Income
[1, 58.39927 -0.6904944 0.5086567
[2, 58.74560 -0.6713341 0.4082533

1
1

[3,]1 54.82317 -0.6338069 0.5912671
1 56.27808 -0.6350209 0.4710034

It is possible to use these in further calculations - R is a programming language
after all. Thus, it is possible to enter something like

pseudo.t <- modell$est / modell$se

and estimate a pseudo ¢-statistic to informally investigate departures from zero of
local regression coefficients. Entering

pseudo.t

now would suggest that the Cr ime coefficient seems to differ notably from zero
in more places than Income.

3 Visualizing GWR

The previous section demonstrated how the basic GWR function can fit local re-
gression coefficients at the locations of the data points, but in many cases we wish
to fit the coefficients at different data points. In particular, to view the GWR coef-
ficients as continuous surfaces, it is helpful to fit them on the vertices of a regular
grid. The first function needed for this is nice.grid. This takes a two column
location matrix (such as loc) and returns another such matrix, whose points are
the vertices of a grid. This is best shown visually. First enter
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plot(loc)

to see the irregular point patterns of the data zone centroids. Now, create a set of
regular grid points, store them in the variable gr, and plot these:

gr <- nice.grid(loc)
plot(gr)

The points in gr form a regular grid. The extent of the grid covers the original
point pattern with some extra space around the margins. To see the relationship
between the two sets of points enter

plot(gr,pch="+")
points(loc,pch=16)

Counting the *“+” signs on this plot will show that the grid consists of a 25 x 25
arrangement of points. This may be altered by using the named argument size
innice.grid:

gr <- nice.grid(loc,size=c(40,40))

for example.
Next, we need to evaluate the GWR model at the locations in gr. This is done
using the named argument out. loc in gwr:

model2 <- gwr(X,y,loc,out.loc=gr)

This creates a new variable model2. This variable is similar to model1, but
with the local coefficient estimates and standard errors evaluated at points on the
lattice gr. As before, it is possible to ‘unpack’ the GWR results, and to use them
in further computations. However, as suggested earlier, it is also possible to visu-
alize the local coefficient surfaces. To do this, the plot command is used. In its
simplest form, this will require two arguments: the name of the variable contain-
ing the GWR result, and the name of the coefficient. The following example will
plot the Income term from the model.

plot(model2,” Income” ,view="fl")

The plot created is a filled contour plot, sometimes referred to as a level plot
(Cleveland 1993). The colour scheme runs from near-white (high) to green (low).
An alternative view can be obtained using the view named argument. Here, set-
ting this to the character s’ gives a surface representation in three-dimensional
space.

plot(model2,” Income”,view="s”)
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With surface views, it is also possible to alter the angle of viewing using phi and
theta, as it is with the standard R function persp:

plot(model2,” Income” ,view="s”,phi=40,border=NA)

In fact, all of the persp parameters may be used. If you have R version 1.0.0
or later, it is possible to label the plot axes using the parameter xl1ab, ylab and
zlab:

plot(model2,”Income” ,view="s”,phi=40,
xlab="Easting”,ylab="Northing”,zlab="1ncome~”)

To plot the standard error surface, the se parameter should be set to TRUE or
T. The standard error of the Income surface may be drawn using

plot(model2,” Income”,se=T)

The view seen here is fairly typical, with the highest standard errors occurring at
the edges of the grid.

Note that some areas in the grid are quite some distance from any data points.
To verify this using the *’Crime’ variable as a ‘backdrop’, one could enter

plot(model2,”Crime”)
points(loc,pch=16)

This becomes even more apparent if the convex hull of the data points is added to
the plot.

columbus.hull <- loc[chull(loc),]
polygon(columbus.hull)

In the above code, the indices of the points on the convex hull of Ioc are returned
by the standard R function chul I, in clockwise order. These are then used to se-
lect the coordinates of 1oc to be stored in the location matrix columbus.hull.
Clearly, attention of the GWR analysis should be focused within the convex hull.
Areas a long way away from this do not have any data very close to them, and
the results of analysis are likely to be unreliable. It would be useful, therefore, to
‘clip’ the graphical representation around the convex hull. This is done using the
context named argument:

plot(model2,” Income”,context=function() cookie(columbus._hull))

Note the unusual form of the argument - this is because we are actually passing
a function to the plot command, rather than a variable. This feature is also useful
with the polygon outline of a geographical region, for example the mainland of
the UK. An example of this will be given in section 5.

An alternative, but perhaps not as asthetically pleasing method of "trimming’
the surfaces around the study area is to use the mask option:
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plot(model2,” Income” ,mask=columbus.hull)

One advantage of the mask option is that it will work on surfaces view="s~
whereas the context method will not.

Finally, the plot command for GWR models can be used in conjunction
with all of R’s other graphical facilities (except when view = ~f17) For ex-
ample, it is possible to create multiple panels in the same window using the
par(mfrow=...) option. For this demonstration is is probably a good idea
to resize the graphics window to by about twice as wide as it is tall.

par(mfrow=c(1,2))
plot(model2, Crime” ,view="s” ,mask=columbus.hull)
plot(model2,’Crime” ,se=T,view="s” ,mask=columbus.hull)

4 Bandwidth Selection

In the previous sections, nothing has been mentioned about bandwidth selection
for GWR models. In fact, in all of the examples until now, the bandwidth has been
chosen automatically. Unless explicitly told what value the bandwidth should
take, the value chosen by gwr is the standard distance of the points specified in
loc - for a definition of this quantity see page 136 of Fotheringham, Brunsdon,
and Charlton (2000). To see the value of bandwidth that has been chosen, simply
print the model value returned from the gwr function. For example, entering

modell <- gwr(X,y,loc)
modell

gives the readout

GWR model with variables : Intercept Crime Income
Bandwidth = 8.07

Effective D.F. = 5.752

Corrected AIC = 321.9

Here, alongside some other information we see that the bandwidth is 8.07 units.

This default bandwidth choice tends to oversmooth the data, although such
a choice of bandwidth could be viewed as ‘conservative’, in the sense that any
features of nonstationarity detected by this process are reasonably likely to be
genuine, and not consequences of outlying or unusual data points. However, the
bandwidth may also be chosen directly using the bw named argument in gwr. A
much ‘tighter’ bandwidth than the default choice is used below:



model3 <- gwr(X,y,loc,out. loc=gr,bw=2)
plot(model3, ”Income” ,view="fl")

A very large bandwidth is virtually equivalent to fitting a global model.

model4 <- gwr(x,y, loc,bw=1000000)
model4$est

Gives the output

Intercept Crime Income
[1, 46.42818 -0.4848885 0.628984
[2, 46.42818 -0.4848885 0.628984

1
1

[3,]1 46.42818 -0.4848885 0.628984
1 46.42818 -0.4848885 0.628984

Thus, although a GWR was fitted, the coefficient estimates are the same at all
points. Indeed, entering

Im(Homeval Crime+Income,data=columbus)

will verify that the coefficients agree with the those from the global model.

Another way to choose the bandwidth is via the effective degrees of freedom
of the model. To explain this concept very briefly, a number of regression type
models can be expressed in hat matrix form. That is, the predicted y-values and
the observed y-values are related by an equation of the form

This is true for many kinds of nonparametric regression, and in particular it is true
for GWR (Brunsdon, Fotheringham, and Charlton 1999). H, the so-called hat
matrix, has a number of important uses. For example, to estimate the variance of
the error term in a GWR model, the expression

B RSS
62 = — o2
n— Tr(H)

may be used. Note that this is very similar to the expression used in a global

regression model:
., RSS
o

n—p




where p is the number of parameters in the model. In particular, in the GWR-based
equation, Tr(H) corresponds to p. In fact, this association holds in a number of
situations, and Tr(H) is often referred to as the effective number of parameters or
effective degrees of freedom of the model - see for example Bowman and Azzalini
(1997) or Hastie and Tibshirani (1990). Thus, each GWR model has an effective
D.F. associated with it. This quantity need not be an integer - in fact usually it
IS not - but it gives a general idea of the flexibility of the model. Note that this
is stored in the output attribute list from gwr, as the item labelled df.used.
It is also shown when the model variable is listed. For example, when you en-
tered model 1 earlier in this section, the effective D.F. was shown to be 5.752.
This means there is slightly less “flexibility” in this model than in a global linear
regression model with six explanatory variables. Now enter

model4

recall that this model had a bandwidth of 1,000,000 units - which on the scale of
measurement used in loc is virtually infinite - and that the effective D.F. in this
case is 3 - which agrees with the D.F. of the global model.

Using the gwr . From.dT function it is possible to specify GWR models with
a given effective D.F., instead of specifyingbandwidth. The function works like
gwr, but takes a named argument df instead of bw. For example, to specify a
model with 9 effective D.F., enter

model5 <- gwr.from.df(x,y,loc,out.loc=gr,df=9)
model5

The second line entered gives the readout

GWR model with variables : Intercept Crime Income
Bandwidth = 5.145

Effective D.F. = 9

Corrected AIC = 324.8

This verifies that the model really does have 9 effective D.F., and also shows that
the bandwidth required for this is 5.145 units. A rough interpretation of the model
flexibility here can be obtained by noting that if we apply the expansion method
of Casetti (1972), and assume that each coefficient in the regression model is a
linear function of geographical location, say a + bu; + cv;, where (u;,v;) is the
location of observation i, then we end up with 9 parameters to be estimated. Thus,
the degree of flexibility here is about the same as if each GWR surface is assumed
to be a planar function. However, care must be taken to point out that this is not
the same thing as saying that the surfaces actually are planar. To see this, enter



par(mfrow=c(2,2))

plot(model5, ” Intercept”,view="s” ,phi=40,border=NA)
plot(model5, ”Income” ,view="s”,phi=40,border=NA)
plot(model5,’Crime”,view="s”,phi=40,border=NA)

This is quite an important point. In some cases satisfactory GWR surfaces can be
obtained with many less D.F. than the number required to model the most basic
anisotropic parametric model in which all coefficients show spatial nonstationar-
ity. This in turn leads to smaller standard errors in the surface estimates, and to
smaller mean squared prediction errors for the y,’s.

5 Mode Selection

An important part of any modelling procedure is selecting which model is most
appropriate for a given data set. This is as much the case with GWR models as
with any other kind. One useful approach to model selection theory is the use of
the Akaike Information Criterion (AIC) (Akaike 1973). The underlying idea is to

estimate the quantity
' f(y)
/ f(y)log <g(y)> dy

which measures the information distance between the model distribution ¢ and
the true distribution f (Kullback and Leibler 1951). By comparing this quantity
for a number of competing models ¢; ... g, we can decide which is “‘closest to
reality’. Unlike classical statistical inference, this doesn’t involve a decision as
to whether a hypothesis is ‘true’. Such an assertion of absolute truth is certainly
dubious in many social science situations, and arguably so in many other areas of
study. Instead, this approach assumes that all models are “wrong’ in a strict sense,
but that some are closer approximations to reality than others.

In *hat matrix’ situations generally, the AIC can be reasonably estimated by
the expression

n + Tr(H)

n+2— Tr(H)
(Hurvich and Simonoff 1998). This expression is computed by default in both
gwr and gwr . from.dT. It may be accessed as the named list item aic in the
object returned by these routines, and it may be seen when the object is printed
out. Entering

AIC. =2nlog(5) +

model5

gives the readout



GWR model with variables : Intercept Crime Income
Bandwidth = 5.145

Effective D.F. = 9

Corrected AIC = 324.8

Results are in gridded format

showing that the AIC for modell5 is 324.8. The phrase ‘corrected’ is used here
to distinguish this estimate of AIC from a simpler one that is sometimes used:

AIC = 2nlog(s) + 2Tr(H)

This expression is based on a simpler method of estimating the AIC, but has been
found experimentally to favour undersmooth regression surfaces. It is important
to distinguish between the two expressions - they should not be mixed when com-
paring models.

To decide which particular GWR model should be used, a number of compet-
ing models should be evaluated, and their AICs compared. Note that these com-
peting models may differ with respect to the calibration bandwidth, the choice of
explanatory variables or both of these. If a single model is to be selected as ‘best’
then this should be the one with the lowest AIC. For example, model5 has an
AIC of 324.8, whereas for mode 11 the value is 321.9, suggesting that the model
with the smaller effective D.F. (nodel 1) is the better of the two.

For a given set of explanatory variables, the function gwr.from.aic will
find the model whose bandwidth yields the smallest value of the AIC:

model6 <- gwr.from.aic(Xx,y,loc,out.loc=gr)
model6

in this case, we get the readout

GWR model with variables : Intercept Crime Income
Bandwidth = 13.06

Effective D.F. 4_.054

Corrected AIC = 321.2

Results are in gridded format

so that the best AIC obtainable from this model is 321.2, when the effective D.F.
is 4.054, and the bandwidth is 13.06 units. This is only a marginal improvement
on model1l.

An alternative way of comparing the AICs for a number of competing models
is to consider the Akaike weights for each model. If the AIC for model ¢ is denoted
by A; then the Akaike weight for model i is defined as

o _en(=A2)
TS en(-A:?)
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The w;’s sum to one, and can be thought of as the ‘weight of evidence’ in favour
of each model. Using this approach, we obtain some idea of the relative likelihood
that each model is ‘best’, rather than choosing a single candidate. It has been noted
that w; has a Bayesian interpretation - see for example Akaike (1994) and Akaike
(1981). If we place equal prior probabilities on each of the competing models
being the ‘best’, then the w;’s are the posterior probabilities that each model is
‘best’, in the light of the data.
For example, to compare mode 14, mode 15 and mode 16 we could enter

aic.list <- exp(-0.5 * c(model4$aic, model5%aic, model6$aic))
aic.list <- aic.list /7 sum(aic.list)
aic.list

This shows the respective posterior probabilities for node 14, mode 15 and mode 16
to be about 0.42, 0.08 and 0.50 respectively. Recall that mode 14 was effectively
the global model. This result suggests that the model with the tights bandwidth
(model6) is unlikely to be the best, but that the global model and model5 are
roughly equally likely. This is not a conclusive result, as it suggests that the most
plausible GWR result is only a little more likely than the global model. One pos-
sible interpretation here is that if spatial non-stationarity is present, there is not a
great deal of variation in the regression parameters. This is perhaps a reasonable
interpretation here - the analysis only covers one urban area, and has quite a small
number of observations, so perhaps one would not expect to detect any large-scale
trends.
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6 Working with Large Data Sets

One practical problem when working with GWR is that the data set to be analysed
is often quite large. In the UK, for example, there are around 10,000 census wards,
and GWR models analysing data for the whole country at this level of spatial
aggregation is fairly common. I have tested the library on datasets of this size, and
in general the software has coped®. The main difficulty has been the time taken
to compute the standard errors, the effective D.F. and the AIC. Computationally,
this is because all of these quantities require an estimate of 62 or Tr(H) to be
computed. Computing 62 requires the residual sum of squares to be computed,
which means that the GWR model has to be computed » times, in order to obtain
a local regression estimate for each y;. Clearly, if n=10,000 this is quite a lot
of computation. Similar levels of calculation are needed to compute Tr(H). To
give a real life example, computing a 10,000 case by 4 variable problem takes
around 20 minutes on my 450MHZ PC at the time of writing this primer. Note
that gwr . from.df and gwr . From. aic iteratively re-evaulate GWR models,
and could take somewhat longer than this.

However, the basic estimation procedure does not require 62 or Tr(H) to be
computed. Also, when the data set is this large, and the GWR coefficients are
estimated on a grid, then the number of points at which the model is computed
tends to be very much smaller than n. For example, the default grid size is 25 x
25 = 625 points. Thus, if it is only the coefficient estimates that are required, the
computing time can be reduced by about 94%. To facilitate this, the gwr function
has the optional named argument qui ck. Entering

gwr(Xx,y, loc,out.loc=gr,quick=T)

causes the gwr function to skip all computation except the basic coefficient esti-
mation. The returned object is the same as for a normal call to gwr, except the
information regarding the effective D.F., the AIC and the standard error estimates
are all NA, R’s missing value symbol. Grid-based output can be visualized with
plot as before, although setting the named argument se=T will now result in an
error message.

I would suggest initially using the quick=T option to explore a large dataset,
and perhaps decide on an appropriate bandwidth by trial and error and visual in-
spection of the coefficient surfaces. Then, one could set the full-blown gwr rou-
tine running and go for a coffee. Alternatively, one could leave gwr . from.df
or gwr . From._aic to run overnight.

Lathough you may need to expand R’s run time memory requirement
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